Abstract
Nucleotide sequences from strains of the four species currently in the genus Chlamydia, C. pecorum, C. pneumoniae, C. psittaci, and C. trachomatis were investigated. In vitro-amplified RNA genes of the ribosomal small subunit from 30 strains of C. pneumoniae and C. pecorum were subjected to solid-phase DNA sequencing of both strands. The human isolates of C. pneumoniae differed in only one position in the 16S rRNA gene, indicating genetic homogeneity among these strains. Interestingly, horse isolate N16 of C. pneumoniae was found to be closely related to the human isolates of this species, with a 98.9% nucleotide similarity between their 16S rRNA sequences. The type strain and koala isolates of C. pecorum were also found to be very similar to each other, possessing two different 16S rRNA sequences with only one-nucleotide difference. Furthermore, the C. pecorum strains truncated the 16S rRNA molecule by one nucleotide compared to the molecules of the other chlamydial species. This truncation was found to result in loss of a unilaterally bulged nucleotide, an attribute present in all other eubacteria. The phylogenetic structure of the genus Chlamydia was determined by analysis of 16S rRNA sequences. All phylogenetic trees revealed a distinct line of descent of the family Chlamydiaceae built of two main clusters which we denote the C. pneumoniae cluster and the C. psittaci cluster. The clusters were verified by bootstrap analysis of the trees and signature nucleotide analysis. The former cluster contained the human isolates of C. pneumoniae and equine strain N16. The latter cluster consisted of C. psittaci, C. pecorum, and C. trachomatis. The members of the C. pneumoniae cluster showed tight clustering and strain N16 is likely to be a subspecies of C. pneumoniae since these strains also share some antigenic cross-reactivity and clustering of major outer membrane protein gene sequences. C. psittaci and strain N16 branched early out of the respective cluster, and interestingly, their inclusion bodies do not stain with iodine. Furthermore, they also share less reliable features like normal elementary body morphology and plasmid content. Therefore, the branching order presented here is very likely a true reflection of evolution, with strain N16 of the species C. pneumoniae and C. psittaci forming early branches of their respective cluster and with C. trachomatis being the more recently evolved species within the genus Chlamydia.
Full Text
The Full Text of this article is available as a PDF (352.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black C. M., Fields P. I., Messmer T. O., Berdal B. P. Detection of Chlamydia pneumoniae in clinical specimens by polymerase chain reaction using nested primers. Eur J Clin Microbiol Infect Dis. 1994 Sep;13(9):752–756. doi: 10.1007/BF02276060. [DOI] [PubMed] [Google Scholar]
- Black C. M., Johnson J. E., Farshy C. E., Brown T. M., Berdal B. P. Antigenic variation among strains of Chlamydia pneumoniae. J Clin Microbiol. 1991 Jul;29(7):1312–1316. doi: 10.1128/jcm.29.7.1312-1316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801–4805. doi: 10.1073/pnas.75.10.4801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin K., Roblin P. M., Gelling M., Hammerschlag M. R., Schachter J. Infection with Chlamydia pneumoniae in Brooklyn. J Infect Dis. 1991 Apr;163(4):757–761. doi: 10.1093/infdis/163.4.757. [DOI] [PubMed] [Google Scholar]
- Chirgwin K., Roblin P. M., Gelling M., Hammerschlag M. R., Schachter J. Infection with Chlamydia pneumoniae in Brooklyn. J Infect Dis. 1991 Apr;163(4):757–761. doi: 10.1093/infdis/163.4.757. [DOI] [PubMed] [Google Scholar]
- Fukushi H., Hirai K. Chlamydia pecorum--the fourth species of genus Chlamydia. Microbiol Immunol. 1993;37(7):516–522. [PubMed] [Google Scholar]
- Fukushi H., Hirai K. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Bacteriol. 1992 Apr;42(2):306–308. doi: 10.1099/00207713-42-2-306. [DOI] [PubMed] [Google Scholar]
- Fukushi H., Hirai K. Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Int J Syst Bacteriol. 1993 Jul;43(3):613–617. doi: 10.1099/00207713-43-3-613. [DOI] [PubMed] [Google Scholar]
- Gaydos C. A., Palmer L., Quinn T. C., Falkow S., Eiden J. J. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Int J Syst Bacteriol. 1993 Jul;43(3):610–612. doi: 10.1099/00207713-43-3-610. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Campbell L. A., Kuo C. C., Mordhorst C. H., Saikku P., Thom D. H., Wang S. P. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990 Apr;161(4):618–625. doi: 10.1093/infdis/161.4.618. [DOI] [PubMed] [Google Scholar]
- Grayston J. T. Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis. 1992 Nov;15(5):757–761. doi: 10.1093/clind/15.5.757. [DOI] [PubMed] [Google Scholar]
- Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn D. L., Dodge R. W., Golubjatnikov R. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA. 1991 Jul 10;266(2):225–230. [PubMed] [Google Scholar]
- Hultman T., Bergh S., Moks T., Uhlén M. Bidirectional solid-phase sequencing of in vitro-amplified plasmid DNA. Biotechniques. 1991 Jan;10(1):84–93. [PubMed] [Google Scholar]
- Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman C. L., Roblin P. M., Gaydos C. A., Quinn T. C., Schachter J., Hammerschlag M. R. Prevalence of asymptomatic nasopharyngeal carriage of Chlamydia pneumoniae in subjectively healthy adults: assessment by polymerase chain reaction-enzyme immunoassay and culture. Clin Infect Dis. 1995 May;20(5):1174–1178. doi: 10.1093/clinids/20.5.1174. [DOI] [PubMed] [Google Scholar]
- Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
- Kaltenboeck B., Kousoulas K. G., Storz J. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J Bacteriol. 1993 Jan;175(2):487–502. doi: 10.1128/jb.175.2.487-502.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Shor A., Campbell L. A., Fukushi H., Patton D. L., Grayston J. T. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis. 1993 Apr;167(4):841–849. doi: 10.1093/infdis/167.4.841. [DOI] [PubMed] [Google Scholar]
- Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noller H. F. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
- Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny. FASEB J. 1993 Jan;7(1):113–123. doi: 10.1096/fasebj.7.1.8422957. [DOI] [PubMed] [Google Scholar]
- Pettersson B., Johansson K. E., Uhlén M. Sequence analysis of 16S rRNA from mycoplasmas by direct solid-phase DNA sequencing. Appl Environ Microbiol. 1994 Jul;60(7):2456–2461. doi: 10.1128/aem.60.7.2456-2461.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettersson B., Leitner T., Ronaghi M., Bölske G., Uhlen M., Johansson K. E. Phylogeny of the Mycoplasma mycoides cluster as determined by sequence analysis of the 16S rRNA genes from the two rRNA operons. J Bacteriol. 1996 Jul;178(14):4131–4142. doi: 10.1128/jb.178.14.4131-4142.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettersson B., Lembke F., Hammer P., Stackebrandt E., Priest F. G. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J Syst Bacteriol. 1996 Jul;46(3):759–764. doi: 10.1099/00207713-46-3-759. [DOI] [PubMed] [Google Scholar]
- Popov V. L., Shatkin A. A., Pankratova V. N., Smirnova N. S., von Bonsdorff C. H., Ekman M. R., Mörttinen A., Saikku P. Ultrastructure of Chlamydia pneumoniae in cell culture. FEMS Microbiol Lett. 1991 Nov 15;68(2):129–134. doi: 10.1016/0378-1097(91)90115-q. [DOI] [PubMed] [Google Scholar]
- Powers T., Noller H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991 Aug;10(8):2203–2214. doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rzhetsky A., Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol. 1993 Sep;10(5):1073–1095. doi: 10.1093/oxfordjournals.molbev.a040056. [DOI] [PubMed] [Google Scholar]
- Storey C., Lusher M., Yates P., Richmond S. Evidence for Chlamydia pneumoniae of non-human origin. J Gen Microbiol. 1993 Nov;139(11):2621–2626. doi: 10.1099/00221287-139-11-2621. [DOI] [PubMed] [Google Scholar]
- Wahlberg J., Holmberg A., Bergh S., Hultman T., Uhlén M. Automated magnetic preparation of DNA templates for solid phase sequencing. Electrophoresis. 1992 Aug;13(8):547–551. doi: 10.1002/elps.11501301112. [DOI] [PubMed] [Google Scholar]
- Weisburg W. G., Hatch T. P., Woese C. R. Eubacterial origin of chlamydiae. J Bacteriol. 1986 Aug;167(2):570–574. doi: 10.1128/jb.167.2.570-574.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wills J. M., Watson G., Lusher M., Mair T. S., Wood D., Richmond S. J. Characterisation of Chlamydia psittaci isolated from a horse. Vet Microbiol. 1990 Jul;24(1):11–19. doi: 10.1016/0378-1135(90)90046-x. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Winker S., Gutell R. R. Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". Proc Natl Acad Sci U S A. 1990 Nov;87(21):8467–8471. doi: 10.1073/pnas.87.21.8467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994 Jul;39(1):105–111. doi: 10.1007/BF00178256. [DOI] [PubMed] [Google Scholar]