Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(13):4219–4226. doi: 10.1128/jb.179.13.4219-4226.1997

Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains.

H C Pinkart 1, D C White 1
PMCID: PMC179242  PMID: 9209036

Abstract

The role of the cell envelope in the solvent tolerance mechanisms of Pseudomonas putida was investigated. The responses of a solvent-tolerant strain, P. putida Idaho, and a solvent-sensitive strain, P. putida MW1200, were examined in terms of phospholipid content and composition and of phospholipid biosynthetic rate following exposure to a nonmetabolizable solvent, o-xylene. Following o-xylene exposure, P. putida MW1200 exhibited a decrease in total phospholipid content. In contrast, P. putida Idaho demonstrated an increase in phospholipid content 1 to 6 h after exposure. Analysis of phospholipid biosynthesis showed P. putida Idaho to have a higher basal rate of phospholipid synthesis than MW1200. This rate increased significantly following exposure to xylene. Both strains showed little significant turnover of phospholipid in the absence of xylene. In the presence of xylene, both strains showed increased phospholipid turnover. The rate of turnover was significantly greater in P. putida Idaho than in P. putida MW1200. These results suggest that P. putida Idaho has a greater ability than the solvent-sensitive strain MW1200 to repair damaged membranes through efficient turnover and increased phospholipid biosynthesis.

Full Text

The Full Text of this article is available as a PDF (176.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird W. M., Diamond L., Borun T. W., Shulman S. Analysis of metabolism of carcinogenic polycyclic hydrocarbons by position-sensing proportional counting of thin-layer chromatograms. Anal Biochem. 1979 Oct 15;99(1):165–169. doi: 10.1016/0003-2697(79)90058-7. [DOI] [PubMed] [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benschoter A. S., Ingram L. O. Thermal Tolerance of Zymomonas mobilis: Temperature-Induced Changes in Membrane Composition. Appl Environ Microbiol. 1986 Jun;51(6):1278–1284. doi: 10.1128/aem.51.6.1278-1284.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cruden D. L., Wolfram J. H., Rogers R. D., Gibson D. T. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl Environ Microbiol. 1992 Sep;58(9):2723–2729. doi: 10.1128/aem.58.9.2723-2729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guckert J. B., Hood M. A., White D. C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol. 1986 Oct;52(4):794–801. doi: 10.1128/aem.52.4.794-801.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heipieper H. J., Diefenbach R., Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol. 1992 Jun;58(6):1847–1852. doi: 10.1128/aem.58.6.1847-1852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heipieper H. J., de Bont J. A. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol. 1994 Dec;60(12):4440–4444. doi: 10.1128/aem.60.12.4440-4444.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hwang Y. W., Engel R., Tropp B. E. Correlation of 3,4-dihydroxybutyl 1-phosphonate resistance with a defect in cardiolipin synthesis in Escherichia coli. J Bacteriol. 1984 Mar;157(3):846–856. doi: 10.1128/jb.157.3.846-856.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ingram L. O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol. 1977 May;33(5):1233–1236. doi: 10.1128/aem.33.5.1233-1236.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inoue A., Yamamoto M., Horikoshi K. Pseudomonas putida Which Can Grow in the Presence of Toluene. Appl Environ Microbiol. 1991 May;57(5):1560–1562. doi: 10.1128/aem.57.5.1560-1562.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Isken S., de Bont J. A. Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol. 1996 Oct;178(20):6056–6058. doi: 10.1128/jb.178.20.6056-6058.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson R. W., DeMoss J. A. Effects of toluene on Escherichia coli. J Bacteriol. 1965 Nov;90(5):1420–1425. doi: 10.1128/jb.90.5.1420-1425.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joseleau-Petit D., Képès F., Peutat L., D'Ari R., Képès A. DNA replication initiation, doubling of rate of phospholipid synthesis, and cell division in Escherichia coli. J Bacteriol. 1987 Aug;169(8):3701–3706. doi: 10.1128/jb.169.8.3701-3706.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Labischinski H., Barnickel G., Bradaczek H., Naumann D., Rietschel E. T., Giesbrecht P. High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane. J Bacteriol. 1985 Apr;162(1):9–20. doi: 10.1128/jb.162.1.9-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nieboer M., Kingma J., Witholt B. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol Microbiol. 1993 Jun;8(6):1039–1051. doi: 10.1111/j.1365-2958.1993.tb01649.x. [DOI] [PubMed] [Google Scholar]
  16. Ogino H., Miyamoto K., Ishikawa H. Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl Environ Microbiol. 1994 Oct;60(10):3884–3886. doi: 10.1128/aem.60.10.3884-3886.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ogino H., Yasui K., Shiotani T., Ishihara T., Ishikawa H. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol. 1995 Dec;61(12):4258–4262. doi: 10.1128/aem.61.12.4258-4262.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierucci O. Phospholipid synthesis during the cell division cycle of Escherichia coli. J Bacteriol. 1979 May;138(2):453–460. doi: 10.1128/jb.138.2.453-460.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pinkart H. C., Wolfram J. W., Rogers R., White D. C. Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene. Appl Environ Microbiol. 1996 Mar;62(3):1129–1132. doi: 10.1128/aem.62.3.1129-1132.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramos J. L., Duque E., Huertas M. J., Haïdour A. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol. 1995 Jul;177(14):3911–3916. doi: 10.1128/jb.177.14.3911-3916.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sikkema J., Poolman B., Konings W. N., de Bont J. A. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J Bacteriol. 1992 May;174(9):2986–2992. doi: 10.1128/jb.174.9.2986-2992.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sikkema J., de Bont J. A., Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995 Jun;59(2):201–222. doi: 10.1128/mr.59.2.201-222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sinclair M. I., Maxwell P. C., Lyon B. R., Holloway B. W. Chromosomal location of TOL plasmid DNA in Pseudomonas putida. J Bacteriol. 1986 Dec;168(3):1302–1308. doi: 10.1128/jb.168.3.1302-1308.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weber F. J., Isken S., de Bont J. A. Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology. 1994 Aug;140(Pt 8):2013–2017. doi: 10.1099/13500872-140-8-2013. [DOI] [PubMed] [Google Scholar]
  26. Weber F. J., de Bont J. A. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):225–245. doi: 10.1016/s0304-4157(96)00010-x. [DOI] [PubMed] [Google Scholar]
  27. Wieslander A., Rilfors L., Lindblom G. Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects on lipid packing. Biochemistry. 1986 Nov 18;25(23):7511–7517. doi: 10.1021/bi00371a038. [DOI] [PubMed] [Google Scholar]
  28. Woldringh C. L. Effects of toluene and phenethyl alcohol on the ultrastructure of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1359–1361. doi: 10.1128/jb.114.3.1359-1361.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Smet M. J., Kingma J., Witholt B. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim Biophys Acta. 1978 Jan 4;506(1):64–80. doi: 10.1016/0005-2736(78)90435-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES