Abstract
The oxidation of phenols to quinones is an important reaction in the oxidative tailoring of many aromatic polyketides from bacterial and fungal systems. Sequence similarity between ActVA-Orf6 protein from the actinorhodin biosynthetic cluster and the previously characterized TcmH protein that is involved in tetracenomycin biosynthesis suggested that ActVA-Orf6 might catalyze this transformation as a step in actinorhodin biosynthesis. To investigate the role of ActVA-Orf6 in this oxidation, we have expressed the actVA-Orf6 gene in Escherichia coli and purified and characterized the recombinant protein. ActVA-Orf6 was shown to catalyze the monooxygenation of the tetracenomycin intermediate TcmF1 to TcmD3, strongly suggesting that it catalyzes oxidation of a similar intermediate in actinorhodin biosynthesis. The monooxygenase obeys simple reaction kinetics and has a Km of 4.8 +/- 0.9 microM, close to the figure reported for the homologous enzyme TcmH. The enzyme contains no prosthetic groups and requires only molecular oxygen to catalyze the oxidation. Site-directed mutagenesis was used to investigate the role of histidine residues thought to be important in the reaction; mutants lacking His-52 displayed much-reduced activity, consistent with the proposed mechanistic hypothesis that this histidine acts as a general base during catalysis.
Full Text
The Full Text of this article is available as a PDF (294.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartel P. L., Zhu C. B., Lampel J. S., Dosch D. C., Connors N. C., Strohl W. R., Beale J. M., Jr, Floss H. G. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene functions. J Bacteriol. 1990 Sep;172(9):4816–4826. doi: 10.1128/jb.172.9.4816-4826.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Caballero J. L., Martinez E., Malpartida F., Hopwood D. A. Organisation and functions of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor. Mol Gen Genet. 1991 Dec;230(3):401–412. doi: 10.1007/BF00280297. [DOI] [PubMed] [Google Scholar]
- Cole S. P., Rudd B. A., Hopwood D. A., Chang C. J., Floss H. G. Biosynthesis of the antibiotic actinorhodin. Analysis of blocked mutants of Streptomyces coelicolor. J Antibiot (Tokyo) 1987 Mar;40(3):340–347. doi: 10.7164/antibiotics.40.340. [DOI] [PubMed] [Google Scholar]
- Crosby J., Sherman D. H., Bibb M. J., Revill W. P., Hopwood D. A., Simpson T. J. Polyketide synthase acyl carrier proteins from Streptomyces: expression in Escherichia coli, purification and partial characterisation. Biochim Biophys Acta. 1995 Aug 16;1251(1):32–42. doi: 10.1016/0167-4838(95)00053-w. [DOI] [PubMed] [Google Scholar]
- Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell. 1991 Aug 23;66(4):769–780. doi: 10.1016/0092-8674(91)90120-n. [DOI] [PubMed] [Google Scholar]
- Fernández-Moreno M. A., Martínez E., Boto L., Hopwood D. A., Malpartida F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem. 1992 Sep 25;267(27):19278–19290. [PubMed] [Google Scholar]
- Fernández-Moreno M. A., Martínez E., Caballero J. L., Ichinose K., Hopwood D. A., Malpartida F. DNA sequence and functions of the actVI region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). J Biol Chem. 1994 Oct 7;269(40):24854–24863. [PubMed] [Google Scholar]
- Gramajo H. C., White J., Hutchinson C. R., Bibb M. J. Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol. 1991 Oct;173(20):6475–6483. doi: 10.1128/jb.173.20.6475-6483.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallam S. E., Malpartida F., Hopwood D. A. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene. 1988 Dec 30;74(2):305–320. doi: 10.1016/0378-1119(88)90165-5. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A., Floss H. G., Omura S. Production of 'hybrid' antibiotics by genetic engineering. Nature. 1985 Apr 18;314(6012):642–644. doi: 10.1038/314642a0. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
- Hutchinson C. R., Fujii I. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol. 1995;49:201–238. doi: 10.1146/annurev.mi.49.100195.001221. [DOI] [PubMed] [Google Scholar]
- Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol. 1993;47:875–912. doi: 10.1146/annurev.mi.47.100193.004303. [DOI] [PubMed] [Google Scholar]
- Kendrew S. G., Harding S. E., Hopwood D. A., Marsh E. N. Identification of a flavin:NADH oxidoreductase involved in the biosynthesis of actinorhodin. Purification and characterization of the recombinant enzyme. J Biol Chem. 1995 Jul 21;270(29):17339–17343. doi: 10.1074/jbc.270.29.17339. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Malpartida F., Hopwood D. A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. 1984 May 31-Jun 6Nature. 309(5967):462–464. doi: 10.1038/309462a0. [DOI] [PubMed] [Google Scholar]
- Malpartida F., Hopwood D. A. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet. 1986 Oct;205(1):66–73. doi: 10.1007/BF02428033. [DOI] [PubMed] [Google Scholar]
- Marsh E. N., Harding S. E. Methylmalonyl-CoA mutase from Propionibacterium shermanii: characterization of the cobalamin-inhibited form and subunit-cofactor interactions studied by analytical ultracentrifugation. Biochem J. 1993 Mar 1;290(Pt 2):551–555. doi: 10.1042/bj2900551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Engineered biosynthesis of novel polyketides. Science. 1993 Dec 3;262(5139):1546–1550. doi: 10.1126/science.8248802. [DOI] [PubMed] [Google Scholar]
- McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature. 1995 Jun 15;375(6532):549–554. doi: 10.1038/375549a0. [DOI] [PubMed] [Google Scholar]
- Morrison P. T., Lovett S. T., Gilson L. E., Kolodner R. Molecular analysis of the Escherichia coli recO gene. J Bacteriol. 1989 Jul;171(7):3641–3649. doi: 10.1128/jb.171.7.3641-3649.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omura S., Ikeda H., Malpartida F., Kieser H. M., Hopwood D. A. Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain. Antimicrob Agents Chemother. 1986 Jan;29(1):13–19. doi: 10.1128/aac.29.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudd B. A., Hopwood D. A. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol. 1979 Sep;114(1):35–43. doi: 10.1099/00221287-114-1-35. [DOI] [PubMed] [Google Scholar]
- Shen B., Hutchinson C. R. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science. 1993 Dec 3;262(5139):1535–1540. doi: 10.1126/science.8248801. [DOI] [PubMed] [Google Scholar]
- Shen B., Hutchinson C. R. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry. 1993 Jul 6;32(26):6656–6663. doi: 10.1021/bi00077a019. [DOI] [PubMed] [Google Scholar]
- Shen B., Nakayama H., Hutchinson C. R. Isolation and structural elucidation of tetracenomycin F2 and tetracenomycin F1: early intermediates in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. J Nat Prod. 1993 Aug;56(8):1288–1293. doi: 10.1021/np50098a013. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]