Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(13):4342–4353. doi: 10.1128/jb.179.13.4342-4353.1997

Structure/function analysis of the PII signal transduction protein of Escherichia coli: genetic separation of interactions with protein receptors.

P Jiang 1, P Zucker 1, M R Atkinson 1, E S Kamberov 1, W Tirasophon 1, P Chandran 1, B R Schefke 1, A J Ninfa 1
PMCID: PMC179259  PMID: 9209053

Abstract

The PII protein, encoded by glnB, is known to interact with three bifunctional signal transducing enzymes (uridylyltransferase/uridylyl-removing enzyme, adenylyltransferase, and the kinase/phosphatase nitrogen regulator II [NRII or NtrB]) and three small-molecule effectors, glutamate, 2-ketoglutarate, and ATP. We constructed 15 conservative alterations of PII by site-specific mutagenesis of glnB and also isolated three random glnB mutants affecting nitrogen regulation. The abilities of the 18 altered PII proteins to interact with the PII receptors and the small-molecule effectors 2-ketoglutarate and ATP were examined by using purified components. Results with certain mutants suggested that the specificity for the various protein receptors was altered; other mutations affected the interaction with all three receptors and the small-molecule effectors to various extents. The apex of the large solvent-exposed T loop of the PII protein (P. D. Carr, E. Cheah, P. M. Suffolk, S. G. Vasudevan, N. E. Dixon, and D. L. Ollis, Acta Crytallogr. Sect. D 52:93-104, 1996), which includes the site of PII modification, was not required for the binding of small-molecule effectors but was necessary for the interaction with all three receptors. Mutations altering residues of this loop or affecting the nearby B loop of PII, which line a cleft between monomers in the trimeric PII, affected the interactions with protein receptors and the binding of small-molecule ligands. Thus, our results support the predictions made from structural studies that the exposed loops of PII and cleft formed at their interface are the sites of regulatory interactions.

Full Text

The Full Text of this article is available as a PDF (380.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler S. P., Purich D., Stadtman E. R. Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem. 1975 Aug 25;250(16):6264–6272. [PubMed] [Google Scholar]
  2. Allikmets R., Gerrard B., Court D., Dean M. Cloning and organization of the abc and mdl genes of Escherichia coli: relationship to eukaryotic multidrug resistance. Gene. 1993 Dec 22;136(1-2):231–236. doi: 10.1016/0378-1119(93)90470-n. [DOI] [PubMed] [Google Scholar]
  3. Atkinson M. R., Kamberov E. S., Weiss R. L., Ninfa A. J. Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). J Biol Chem. 1994 Nov 11;269(45):28288–28293. [PubMed] [Google Scholar]
  4. Atkinson M. R., Ninfa A. J. Characterization of Escherichia coli glnL mutations affecting nitrogen regulation. J Bacteriol. 1992 Jul;174(14):4538–4548. doi: 10.1128/jb.174.14.4538-4548.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Atkinson M. R., Ninfa A. J. Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB). J Bacteriol. 1993 Nov;175(21):7016–7023. doi: 10.1128/jb.175.21.7016-7023.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown M. S., Segal A., Stadtman E. R. Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the P II -regulatory protein. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2949–2953. doi: 10.1073/pnas.68.12.2949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bueno R., Pahel G., Magasanik B. Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J Bacteriol. 1985 Nov;164(2):816–822. doi: 10.1128/jb.164.2.816-822.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carr P. D., Cheah E., Suffolk P. M., Vasudevan S. G., Dixon N. E., Ollis D. L. X-ray structure of the signal transduction protein from Escherichia coli at 1.9 A. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):93–104. doi: 10.1107/S0907444995007293. [DOI] [PubMed] [Google Scholar]
  9. Cheah E., Carr P. D., Suffolk P. M., Vasudevan S. G., Dixon N. E., Ollis D. L. Structure of the Escherichia coli signal transducing protein PII. Structure. 1994 Oct 15;2(10):981–990. doi: 10.1016/s0969-2126(94)00100-6. [DOI] [PubMed] [Google Scholar]
  10. Engleman E. G., Francis S. H. Cascade control of E. coli glutamine synthetase. II. Metabolite regulation of the enzymes in the cascade. Arch Biochem Biophys. 1978 Dec;191(2):602–612. doi: 10.1016/0003-9861(78)90398-3. [DOI] [PubMed] [Google Scholar]
  11. Feng J., Atkinson M. R., McCleary W., Stock J. B., Wanner B. L., Ninfa A. J. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol. 1992 Oct;174(19):6061–6070. doi: 10.1128/jb.174.19.6061-6070.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foor F., Reuveny Z., Magasanik B. Regulation of the synthesis of glutamine synthetase by the PII protein in Klebsiella aerogenes. Proc Natl Acad Sci U S A. 1980 May;77(5):2636–2640. doi: 10.1073/pnas.77.5.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Francis S. H., Engleman E. G. Cascade control of E. coli glutamine synthetase. I. Studies on the uridylyl transferase and uridylyl removing enzyme(s) from E. coli. Arch Biochem Biophys. 1978 Dec;191(2):590–601. doi: 10.1016/0003-9861(78)90397-1. [DOI] [PubMed] [Google Scholar]
  14. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
  16. Holtel A., Merrick M. J. The Klebsiella pneumoniae PII protein (glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL-mediated nif gene regulation. Mol Gen Genet. 1989 Jun;217(2-3):474–480. doi: 10.1007/BF02464920. [DOI] [PubMed] [Google Scholar]
  17. Jiang P., Zucker P., Ninfa A. J. Probing interactions of the homotrimeric PII signal transduction protein with its receptors by use of PII heterotrimers formed in vitro from wild-type and mutant subunits. J Bacteriol. 1997 Jul;179(13):4354–4360. doi: 10.1128/jb.179.13.4354-4360.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jönsson U., Fägerstam L., Ivarsson B., Johnsson B., Karlsson R., Lundh K., Löfås S., Persson B., Roos H., Rönnberg I. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 1991 Nov;11(5):620–627. [PubMed] [Google Scholar]
  19. Kamberov E. S., Atkinson M. R., Chandran P., Ninfa A. J. Effect of mutations in Escherichia coli glnL (ntrB), encoding nitrogen regulator II (NRII or NtrB), on the phosphatase activity involved in bacterial nitrogen regulation. J Biol Chem. 1994 Nov 11;269(45):28294–28299. [PubMed] [Google Scholar]
  20. Kamberov E. S., Atkinson M. R., Feng J., Chandran P., Ninfa A. J. Sensory components controlling bacterial nitrogen assimilation. Cell Mol Biol Res. 1994;40(3):175–191. [PubMed] [Google Scholar]
  21. Kamberov E. S., Atkinson M. R., Ninfa A. J. The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem. 1995 Jul 28;270(30):17797–17807. doi: 10.1074/jbc.270.30.17797. [DOI] [PubMed] [Google Scholar]
  22. Keener J., Kustu S. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4976–4980. doi: 10.1073/pnas.85.14.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Liaw S. H., Pan C., Eisenberg D. Feedback inhibition of fully unadenylylated glutamine synthetase from Salmonella typhimurium by glycine, alanine, and serine. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4996–5000. doi: 10.1073/pnas.90.11.4996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu J., Magasanik B. Activation of the dephosphorylation of nitrogen regulator I-phosphate of Escherichia coli. J Bacteriol. 1995 Feb;177(4):926–931. doi: 10.1128/jb.177.4.926-931.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liu J., Magasanik B. The glnB region of the Escherichia coli chromosome. J Bacteriol. 1993 Nov;175(22):7441–7449. doi: 10.1128/jb.175.22.7441-7449.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacNeil T., MacNeil D., Tyler B. Fine-structure deletion map and complementation analysis of the glnA-glnL-glnG region in Escherichia coli. J Bacteriol. 1982 Jun;150(3):1302–1313. doi: 10.1128/jb.150.3.1302-1313.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacNeil T., Roberts G. P., MacNeil D., Tyler B. The products of glnL and glnG are bifunctional regulatory proteins. Mol Gen Genet. 1982;188(2):325–333. doi: 10.1007/BF00332696. [DOI] [PubMed] [Google Scholar]
  29. Mangum J. H., Magni G., Stadtman E. R. Regulation of glutamine synthetase adenylylation and deadenylylation by the enzymatic uridylylation and deuridylylation of the PII regulatory protein. Arch Biochem Biophys. 1973 Oct;158(2):514–525. doi: 10.1016/0003-9861(73)90543-2. [DOI] [PubMed] [Google Scholar]
  30. Ninfa A. J., Bennett R. L. Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J Biol Chem. 1991 Apr 15;266(11):6888–6893. [PubMed] [Google Scholar]
  31. Ninfa A. J., Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5909–5913. doi: 10.1073/pnas.83.16.5909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ninfa E. G., Atkinson M. R., Kamberov E. S., Ninfa A. J. Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J Bacteriol. 1993 Nov;175(21):7024–7032. doi: 10.1128/jb.175.21.7024-7032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reitzer L. J., Magasanik B. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1979–1983. doi: 10.1073/pnas.82.7.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reitzer L. J., Magasanik B. Isolation of the nitrogen assimilation regulator NR(I), the product of the glnG gene of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5554–5558. doi: 10.1073/pnas.80.18.5554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rhee S. G., Chock P. B., Stadtman E. R. Glutamine synthetase from Escherichia coli. Methods Enzymol. 1985;113:213–241. doi: 10.1016/s0076-6879(85)13032-6. [DOI] [PubMed] [Google Scholar]
  36. Rhee S. G., Chock P. B., Stadtman E. R. Regulation of Escherichia coli glutamine synthetase. Adv Enzymol Relat Areas Mol Biol. 1989;62:37–92. doi: 10.1002/9780470123089.ch2. [DOI] [PubMed] [Google Scholar]
  37. Rhee S. G., Park S. C., Koo J. H. The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase in Escherichia coli. Curr Top Cell Regul. 1985;27:221–232. doi: 10.1016/b978-0-12-152827-0.50026-8. [DOI] [PubMed] [Google Scholar]
  38. Schauder B., Blöcker H., Frank R., McCarthy J. E. Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene. 1987;52(2-3):279–283. doi: 10.1016/0378-1119(87)90054-0. [DOI] [PubMed] [Google Scholar]
  39. Senior P. J. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol. 1975 Aug;123(2):407–418. doi: 10.1128/jb.123.2.407-418.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Son H. S., Rhee S. G. Cascade control of Escherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene. J Biol Chem. 1987 Jun 25;262(18):8690–8695. [PubMed] [Google Scholar]
  41. Weiss V., Magasanik B. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8919–8923. doi: 10.1073/pnas.85.23.8919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de Zamaroczy M., Paquelin A., Peltre G., Forchhammer K., Elmerich C. Coexistence of two structurally similar but functionally different PII proteins in Azospirillum brasilense. J Bacteriol. 1996 Jul;178(14):4143–4149. doi: 10.1128/jb.178.14.4143-4149.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol. 1996 Jul;21(1):133–146. doi: 10.1046/j.1365-2958.1996.6281349.x. [DOI] [PubMed] [Google Scholar]
  44. van Heeswijk W. C., Rabenberg M., Westerhoff H. V., Kahn D. The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol Microbiol. 1993 Aug;9(3):443–457. doi: 10.1111/j.1365-2958.1993.tb01706.x. [DOI] [PubMed] [Google Scholar]
  45. van Heeswijk W. C., Stegeman B., Hoving S., Molenaar D., Kahn D., Westerhoff H. V. An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade. FEMS Microbiol Lett. 1995 Oct 1;132(1-2):153–157. doi: 10.1111/j.1574-6968.1995.tb07825.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES