Abstract
Integron In2 integrase (IntI1)-mediated site-specific recombination between two primary sites occurs at a high frequency, while that between a primary and a secondary site occurs at frequencies around 10,000 times lower. Secondary sites consist of a pentanucleotide with only two fully conserved residues (GWTMW). The analysis of IntI1-mediated recombinants in the plasmid pOX38 revealed the existence in this plasmid of a site used at a frequency intermediate between those of primary and secondary sites. Analysis of this site showed two potentially relevant structural features: first, a set of two consensus pentanucleotides, separated by 5 bp and in opposite orientations, forming what will be called a double site; and second, a longer sequence with some extent of sequence symmetry with the double site at its 3' end. A recombinant plasmid, pSU18P, containing a double site was constructed. Examination of R388-pSU18P recombinants showed that double sites were used preferentially over single pentanucleotides by IntI1. Comparisons of the nucleotide sequences of known 59-bp elements showed that in most cases there was a double site at each element end. Mutagenesis of the F hot spot was carried out to make it look more like the consensus 59-bp element. The improved sites showed recombination frequencies and specificities almost comparable to those observed at IntI1 primary sites.
Full Text
The Full Text of this article is available as a PDF (298.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
- Collis C. M., Grammaticopoulos G., Briton J., Stokes H. W., Hall R. M. Site-specific insertion of gene cassettes into integrons. Mol Microbiol. 1993 Jul;9(1):41–52. doi: 10.1111/j.1365-2958.1993.tb01667.x. [DOI] [PubMed] [Google Scholar]
- Collis C. M., Hall R. M. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol. 1992 Oct;6(19):2875–2885. doi: 10.1111/j.1365-2958.1992.tb01467.x. [DOI] [PubMed] [Google Scholar]
- Collis C. M., Hall R. M. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol. 1992 Mar;174(5):1574–1585. doi: 10.1128/jb.174.5.1574-1585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datta N., Hedges R. W. Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. J Gen Microbiol. 1972 Sep;72(2):349–355. doi: 10.1099/00221287-72-2-349. [DOI] [PubMed] [Google Scholar]
- Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
- Francia M. V., García Lobo J. M. Gene integration in the Escherichia coli chromosome mediated by Tn21 integrase (Int21). J Bacteriol. 1996 Feb;178(3):894–898. doi: 10.1128/jb.178.3.894-898.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francia M. V., de la Cruz F., García Lobo J. M. Secondary-sites for integration mediated by the Tn21 integrase. Mol Microbiol. 1993 Nov;10(4):823–828. doi: 10.1111/j.1365-2958.1993.tb00952.x. [DOI] [PubMed] [Google Scholar]
- Guyer M. S., Reed R. R., Steitz J. A., Low K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):135–140. doi: 10.1101/sqb.1981.045.01.022. [DOI] [PubMed] [Google Scholar]
- Hall R. M., Brookes D. E., Stokes H. W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol. 1991 Aug;5(8):1941–1959. doi: 10.1111/j.1365-2958.1991.tb00817.x. [DOI] [PubMed] [Google Scholar]
- Martinez E., de la Cruz F. Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J. 1990 Apr;9(4):1275–1281. doi: 10.1002/j.1460-2075.1990.tb08236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez E., de la Cruz F. Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol Gen Genet. 1988 Feb;211(2):320–325. doi: 10.1007/BF00330610. [DOI] [PubMed] [Google Scholar]
- Recchia G. D., Hall R. M. Gene cassettes: a new class of mobile element. Microbiology. 1995 Dec;141(Pt 12):3015–3027. doi: 10.1099/13500872-141-12-3015. [DOI] [PubMed] [Google Scholar]
- Recchia G. D., Stokes H. W., Hall R. M. Characterisation of specific and secondary recombination sites recognised by the integron DNA integrase. Nucleic Acids Res. 1994 Jun 11;22(11):2071–2078. doi: 10.1093/nar/22.11.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross W., Landy A. Patterns of lambda Int recognition in the regions of strand exchange. Cell. 1983 May;33(1):261–272. doi: 10.1016/0092-8674(83)90355-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes H. W., Hall R. M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol. 1989 Dec;3(12):1669–1683. doi: 10.1111/j.1365-2958.1989.tb00153.x. [DOI] [PubMed] [Google Scholar]