Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(14):4457–4463. doi: 10.1128/jb.179.14.4457-4463.1997

Depletion of pre-16S rRNA in starved Escherichia coli cells.

G A Cangelosi 1, W H Brabant 1
PMCID: PMC179279  PMID: 9226253

Abstract

Specific hybridization assays for intermediates in rRNA synthesis (pre-rRNA) may become useful for monitoring the growth activity of individual microbial species in complex natural systems. This possibility depends upon the assumption that rRNA processing in microbial cells continues after growth and pre-rRNA synthesis cease, resulting in drainage of the pre-rRNA pool. This is not the case in many eukaryotic cells, but less is known about the situation in bacteria. Therefore, we used DNA probes to measure steady-state cellular pre-16S rRNA pools during growth state transitions in Escherichia coli. Pre-16S rRNA became undetectable when cells entered the stationary phase on rich medium and was replenished upon restoration of favorable growth conditions. These fluctuations were of much greater magnitude than concurrent fluctuations in the mature 16S rRNA pool. The extent of pre-16S rRNA depletion depended upon the circumstances limiting growth. It was significantly more pronounced in carbon-energy-starved cells than in nitrogen-starved cells or in cells treated with energy uncouplers. In the presence of the transcriptional inhibitor rifampin, rates of pre-16S rRNA depletion in carbon-energy-starved cells and nitrogen-starved cells were similar, suggesting that the difference between these conditions resides primarily at the level of pre-rRNA synthesis. Chloramphenicol, which inhibits the final steps in rRNA maturation, halted pre-16S rRNA depletion under all conditions. The data show that E. coli cells continue to process pre-rRNA after growth and rrn operon transcription cease, leading to drainage of the pre-rRNA pool. This supports the feasibility of using pre-rRNA-targeted probes to monitor bacterial growth in natural systems, with the caveat that patterns of pre-rRNA depletion vary with the conditions limiting growth.

Full Text

The Full Text of this article is available as a PDF (307.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aviv M., Giladi H., Oppenheim A. B., Glaser G. Analysis of the shut-off of ribosomal RNA promoters in Escherichia coli upon entering the stationary phase of growth. FEMS Microbiol Lett. 1996 Jun 15;140(1):71–76. doi: 10.1111/j.1574-6968.1996.tb08317.x. [DOI] [PubMed] [Google Scholar]
  4. Britschgi T. B., Cangelosi G. A. Detection of rifampin-resistant bacteria using DNA probes for precursor rRNA. Mol Cell Probes. 1995 Feb;9(1):19–24. doi: 10.1016/s0890-8508(95)90932-x. [DOI] [PubMed] [Google Scholar]
  5. Cangelosi G. A., Brabant W. H., Britschgi T. B., Wallis C. K. Detection of rifampin- and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA. Antimicrob Agents Chemother. 1996 Aug;40(8):1790–1795. doi: 10.1128/aac.40.8.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Condon C., Squires C., Squires C. L. Control of rRNA transcription in Escherichia coli. Microbiol Rev. 1995 Dec;59(4):623–645. doi: 10.1128/mr.59.4.623-645.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dams E., Hendriks L., Van de Peer Y., Neefs J. M., Smits G., Vandenbempt I., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1988;16 (Suppl):r87–173. doi: 10.1093/nar/16.suppl.r87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  9. Dudov K. P., Dabeva M. D. Post-transcriptional regulation of ribosome formation in the nucleus of regenerating rat liver. Biochem J. 1983 Jan 15;210(1):183–192. doi: 10.1042/bj2100183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eckert W. A., Kaffenberger W. Regulation of rRNA metabolism in Tetrahymena pyriformis. I. Nutritional shift-down. Eur J Cell Biol. 1980 Apr;21(1):53–62. [PubMed] [Google Scholar]
  11. Forget B. G., Jordan B. 5S RNA synthesized by Escherichia coli in presence of chloramphenicol: different 5'-terminal sequences. Science. 1970 Jan 23;167(3917):382–384. doi: 10.1126/science.167.3917.382. [DOI] [PubMed] [Google Scholar]
  12. Georgellis D., Arvidson S., von Gabain A. Decay of ompA mRNA and processing of 9S RNA are immediately affected by shifts in growth rate, but in opposite manners. J Bacteriol. 1992 Aug;174(16):5382–5390. doi: 10.1128/jb.174.16.5382-5390.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghora B. K., Apirion D. Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5 S rRNA sequences. J Biol Chem. 1979 Mar 25;254(6):1951–1956. [PubMed] [Google Scholar]
  14. Jensen K. F., Pedersen S. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol Rev. 1990 Jun;54(2):89–100. doi: 10.1128/mr.54.2.89-100.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerkhof L., Ward B. B. Comparison of Nucleic Acid Hybridization and Fluorometry for Measurement of the Relationship between RNA/DNA Ratio and Growth Rate in a Marine Bacterium. Appl Environ Microbiol. 1993 May;59(5):1303–1309. doi: 10.1128/aem.59.5.1303-1309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King T. C., Schlessinger D. S1 nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficient Escherichia coli. J Biol Chem. 1983 Oct 10;258(19):12034–12042. [PubMed] [Google Scholar]
  17. King T. C., Sirdeskmukh R., Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev. 1986 Dec;50(4):428–451. doi: 10.1128/mr.50.4.428-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klein B. K., Staden A., Schlessinger D. Electron microscopy of secondary structure in partially denatured precursor and mature Escherichia coli 16 S and 23 S rRNA. J Biol Chem. 1985 Jul 5;260(13):8114–8120. [PubMed] [Google Scholar]
  19. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  20. Krych M., Sirdeshmukh R., Gourse R., Schlessinger D. Processing of Escherichia coli 16S rRNA with bacteriophage lambda leader sequences. J Bacteriol. 1987 Dec;169(12):5523–5529. doi: 10.1128/jb.169.12.5523-5529.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Larson D. E., Zahradka P., Sells B. H. Control points in eucaryotic ribosome biogenesis. Biochem Cell Biol. 1991 Jan;69(1):5–22. doi: 10.1139/o91-002. [DOI] [PubMed] [Google Scholar]
  22. Mackow E. R., Chang F. N. Processing of precursor ribosomal RNA and the presence of a modified ribosome assembly scheme in Escherichia coli relaxed strain. FEBS Lett. 1985 Mar 25;182(2):407–412. doi: 10.1016/0014-5793(85)80343-4. [DOI] [PubMed] [Google Scholar]
  23. Pace N. R. Structure and synthesis of the ribosomal ribonucleic acid of prokaryotes. Bacteriol Rev. 1973 Dec;37(4):562–603. doi: 10.1128/br.37.4.562-603.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Patel B. K., Banerjee D. K., Butcher P. D. Determination of Mycobacterium leprae viability by polymerase chain reaction amplification of 71-kDa heat-shock protein mRNA. J Infect Dis. 1993 Sep;168(3):799–800. doi: 10.1093/infdis/168.3.799. [DOI] [PubMed] [Google Scholar]
  25. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srivastava A. K., Schlessinger D. Coregulation of processing and translation: mature 5' termini of Escherichia coli 23S ribosomal RNA form in polysomes. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7144–7148. doi: 10.1073/pnas.85.19.7144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steen R., Jemiolo D. K., Skinner R. H., Dunn J. J., Dahlberg A. E. Expression of plasmid-coded mutant ribosomal RNA in E. coli: choice of plasmid vectors and gene expression systems. Prog Nucleic Acid Res Mol Biol. 1986;33:1–18. doi: 10.1016/s0079-6603(08)60018-5. [DOI] [PubMed] [Google Scholar]
  29. Svitil A. L., Cashel M., Zyskind J. W. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):2307–2311. [PubMed] [Google Scholar]
  30. Van Ness J., Chen L. The use of oligodeoxynucleotide probes in chaotrope-based hybridization solutions. Nucleic Acids Res. 1991 Oct 11;19(19):5143–5151. doi: 10.1093/nar/19.19.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Ness J., Kalbfleisch S., Petrie C. R., Reed M. W., Tabone J. C., Vermeulen N. M. A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Res. 1991 Jun 25;19(12):3345–3350. doi: 10.1093/nar/19.12.3345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. doi: 10.1128/aem.60.3.792-800.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van der Vliet G. M., Schepers P., Schukkink R. A., van Gemen B., Klatser P. R. Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemother. 1994 Sep;38(9):1959–1965. doi: 10.1128/aac.38.9.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES