Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1989 Oct;64(10):1472–1477. doi: 10.1136/adc.64.10.1472

Egg and breast milk based nitrogen sources compared.

J W Puntis 1, P A Ball 1, M A Preece 1, A Green 1, G A Brown 1, I W Booth 1
PMCID: PMC1792792  PMID: 2510608

Abstract

A nitrogen source based on egg protein (Vamin 9 glucose) and an alternative with an amino acid profile more similar to breast milk (Vaminolact), were compared in 14 parenterally fed infants. Subjects were randomly allocated to receive one or other amino acid solution, but were otherwise given identical diets. At the start of the study the two groups did not differ significantly in postconceptual age, postnatal age, or weight. Over a six day study period on a stable intake of intravenous nutrients there was no significant difference in growth or nitrogen retention between the two groups. Plasma amino acid profiles in those receiving Vamin 9 glucose, however, were frequently abnormal. Notably, mean concentrations of potentially neurotoxic phenylalanine and tyrosine were significantly higher (140% and 420%, respectively) in patients fed Vamin 9 compared with those given Vaminolact. An amino acid solution based on the composition of breast milk protein therefore brings plasma amino acid profiles during parenteral nutrition closer to those found in breast fed infants, and reduces in particular, the risks of hyperphenylalaninaemia and hypertyrosinaemia.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. E., Guroff G. Enduring behavioral changes in rats with experimental phenylketonuria. Proc Natl Acad Sci U S A. 1972 Apr;69(4):863–867. doi: 10.1073/pnas.69.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coulthard M. G. Device for continuous urine collection in the newborn. Arch Dis Child. 1982 Apr;57(4):322–322. doi: 10.1136/adc.57.4.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dorney S. F., Ament M. E., Berquist W. E., Vargas J. H., Hassall E. Improved survival in very short small bowel of infancy with use of long-term parenteral nutrition. J Pediatr. 1985 Oct;107(4):521–525. doi: 10.1016/s0022-3476(85)80008-1. [DOI] [PubMed] [Google Scholar]
  4. Evans S. J., Wynne-Williams T. C., Russell C. A., Fairbrother A. Hyperphenylalaninaemia in parenterally fed newborn babies. Lancet. 1986 Dec 13;2(8520):1404–1405. doi: 10.1016/s0140-6736(86)92053-2. [DOI] [PubMed] [Google Scholar]
  5. FLECK A., MUNRO H. N. THE DETERMINATION OF ORGANIC NITROGEN IN BIOLOGICAL MATERIALS. A REVIEW. Clin Chim Acta. 1965 Jan;11:2–12. doi: 10.1016/0009-8981(65)90083-5. [DOI] [PubMed] [Google Scholar]
  6. Geggel H. S., Ament M. E., Heckenlively J. R., Martin D. A., Kopple J. D. Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med. 1985 Jan 17;312(3):142–146. doi: 10.1056/NEJM198501173120302. [DOI] [PubMed] [Google Scholar]
  7. Heird W. C., Dell R. B., Helms R. A., Greene H. L., Ament M. E., Karna P., Storm M. C. Amino acid mixture designed to maintain normal plasma amino acid patterns in infants and children requiring parenteral nutrition. Pediatrics. 1987 Sep;80(3):401–408. [PubMed] [Google Scholar]
  8. Lemons J. A., Neal P., Ernst J. Nitrogen sources for parenteral nutrition in the newborn infant. Clin Perinatol. 1986 Mar;13(1):91–109. [PubMed] [Google Scholar]
  9. Malloy M. H., Rassin D. K., Richardson C. J. Total parenteral nutrition in sick preterm infants: effects of cysteine supplementation with nitrogen intakes of 240 and 400 mg/kg/day. J Pediatr Gastroenterol Nutr. 1984 Mar;3(2):239–244. [PubMed] [Google Scholar]
  10. Mamunes P., Prince P. E., Thornton N. H., Hunt P. A., Hitchcock E. S. Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics. 1976 May;57(5):675–680. [PubMed] [Google Scholar]
  11. Prensky A. L., Fishman M. A., Daftari B. Recovery of rat brain from a brief hyperphenylalaninemic insult early in development. Brain Res. 1974 Jun 14;73(1):51–58. doi: 10.1016/0006-8993(74)91006-3. [DOI] [PubMed] [Google Scholar]
  12. Puntis J. W., Edwards M. A., Green A., Morgan I., Booth I. W., Ball P. A. Hyperphenylalaninaemia in parenterally fed newborn babies. Lancet. 1986 Nov 8;2(8515):1105–1106. doi: 10.1016/s0140-6736(86)90513-1. [DOI] [PubMed] [Google Scholar]
  13. Rigo J., Senterre J. Optimal threonine intake for preterm infants fed on oral or parenteral nutrition. JPEN J Parenter Enteral Nutr. 1980 Jan-Feb;4(1):15–17. doi: 10.1177/014860718000400105. [DOI] [PubMed] [Google Scholar]
  14. SNYDERMAN S. E., BOYER A., ROITMAN E., HOLT L. E., Jr, PROSE P. H. The histidine requirement of the infant. Pediatrics. 1963 May;31:786–801. [PubMed] [Google Scholar]
  15. Walker V., Hall M. A., Bulusu S., Allan A. Hyperphenylalaninaemia in parenterally fed newborn babies. Lancet. 1986 Nov 29;2(8518):1284–1284. doi: 10.1016/s0140-6736(86)92715-7. [DOI] [PubMed] [Google Scholar]
  16. Wolff O., Smith I., Beasley M. Quelques limites de la classification et de la nomenclature des hyperphénylalaninémies. Arch Fr Pediatr. 1987;44 (Suppl 1):635–638. [PubMed] [Google Scholar]
  17. Wu P. Y., Edwards N., Storm M. C. Plasma amino acid pattern in normal term breast-fed infants. J Pediatr. 1986 Aug;109(2):347–349. doi: 10.1016/s0022-3476(86)80400-0. [DOI] [PubMed] [Google Scholar]
  18. Zlotkin S. H., Bryan M. H., Anderson G. H. Cysteine supplementation to cysteine-free intravenous feeding regimens in newborn infants. Am J Clin Nutr. 1981 May;34(5):914–923. doi: 10.1093/ajcn/34.5.914. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES