Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(14):4473–4479. doi: 10.1128/jb.179.14.4473-4479.1997

Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition.

P Duwat 1, A Cochu 1, S D Ehrlich 1, A Gruss 1
PMCID: PMC179281  PMID: 9226255

Abstract

Studies of cellular responses to DNA-damaging agents, mostly in Escherichia coli, have revealed numerous genes and pathways involved in DNA repair. However, other species, particularly those which exist under different environmental conditions than does E. coli, may have rather different responses. Here, we identify and characterize genes involved in DNA repair in a gram-positive plant and dairy bacterium, Lactococcus lactis. Lactococcal strain MG1363 was mutagenized with transposition vector pG+host9::ISS1, and 18 mutants sensitive to mitomycin and UV were isolated at 37 degrees C. DNA sequence analyses allowed the identification of 11 loci and showed that insertions are within genes implicated in DNA metabolism (polA, hexB, and deoB), cell envelope formation (gerC and dltD), various metabolic pathways (arcD, bglA, gidA, hgrP, metB, and proA), and, for seven mutants, nonidentified open reading frames. Seven mutants were chosen for further characterization. They were shown to be UV sensitive at 30 degrees C (the optimal growth temperature of L. lactis); three (gidA, polA, and uvs-75) were affected in their capacity to mediate homologous recombination. Our results indicate that UV resistance of the lactococcal strain can be attributed in part to DNA repair but also suggest that other factors, such as cell envelope composition, may be important in mediating resistance to mutagenic stress.

Full Text

The Full Text of this article is available as a PDF (198.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Auffray Y., Gillot B., Lautier M., Thammavongs B., Boutibonnes P. Response of Lactococcus (Streptococcus) lactis to N-methyl-N'-nitro-N-nitrosoguanidine: absence of adaptive response. Mutagenesis. 1989 Jul;4(4):280–282. doi: 10.1093/mutage/4.4.280. [DOI] [PubMed] [Google Scholar]
  3. Balganesh T. S., Lacks S. A. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene. J Bacteriol. 1985 Jun;162(3):979–984. doi: 10.1128/jb.162.3.979-984.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benamira M., Marnett L. J. The lipid peroxidation product 4-hydroxynonenal is a potent inducer of the SOS response. Mutat Res. 1992 Nov;293(1):1–10. doi: 10.1016/0921-8777(92)90002-k. [DOI] [PubMed] [Google Scholar]
  5. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyce J. D., Davidson B. E., Hillier A. J. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Appl Environ Microbiol. 1995 Nov;61(11):4099–4104. doi: 10.1128/aem.61.11.4099-4104.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bressan A., Somma M. P., Lewis J., Santolamazza C., Copeland N. G., Gilbert D. J., Jenkins N. A., Lavia P. Characterization of the opposite-strand genes from the mouse bidirectionally transcribed HTF9 locus. Gene. 1991 Jul 22;103(2):201–209. doi: 10.1016/0378-1119(91)90274-f. [DOI] [PubMed] [Google Scholar]
  8. Bruand C., Ehrlich S. D., Jannière L. Primosome assembly site in Bacillus subtilis. EMBO J. 1995 Jun 1;14(11):2642–2650. doi: 10.1002/j.1460-2075.1995.tb07262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brutlag D., Atkinson M. R., Setlow P., Kornberg A. An active fragment of DNA polymerase produced by proteolytic cleavage. Biochem Biophys Res Commun. 1969 Dec 4;37(6):982–989. doi: 10.1016/0006-291x(69)90228-9. [DOI] [PubMed] [Google Scholar]
  10. Campbell L. A., Yasbin R. E. Deoxyribonucleic acid repair capacities of Neisseria gonorrhoeae: absence of photoreactivation. J Bacteriol. 1979 Dec;140(3):1109–1111. doi: 10.1128/jb.140.3.1109-1111.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Claverys J. P., Lacks S. A. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev. 1986 Jun;50(2):133–165. doi: 10.1128/mr.50.2.133-165.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Delorme C., Godon J. J., Ehrlich S. D., Renault P. Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol. 1993 Jul;175(14):4391–4399. doi: 10.1128/jb.175.14.4391-4399.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diaz A., Pons M. E., Lacks S. A., Lopez P. Streptococcus pneumoniae DNA polymerase I lacks 3'-to-5' exonuclease activity: localization of the 5'-to-3' exonucleolytic domain. J Bacteriol. 1992 Mar;174(6):2014–2024. doi: 10.1128/jb.174.6.2014-2024.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dri A. M., Moreau P. L. Phosphate starvation and low temperature as well as ultraviolet irradiation transcriptionally induce the Escherichia coli LexA-controlled gene sfiA. Mol Microbiol. 1993 May;8(4):697–706. doi: 10.1111/j.1365-2958.1993.tb01613.x. [DOI] [PubMed] [Google Scholar]
  15. Duwat P., Ehrlich S. D., Gruss A. Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis subsp. lactis recA gene. Appl Environ Microbiol. 1992 Aug;58(8):2674–2678. doi: 10.1128/aem.58.8.2674-2678.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Duwat P., Sourice S., Ehrlich S. D., Gruss A. recA gene involvement in oxidative and thermal stress in Lactococcus lactis. Dev Biol Stand. 1995;85:455–467. [PubMed] [Google Scholar]
  17. Duwat P., de Oliveira R., Ehrlich S. D., Boiteux S. Repair of oxidative DNA damage in gram-positive bacteria: the Lactococcus lactis Fpg protein. Microbiology. 1995 Feb;141(Pt 2):411–417. doi: 10.1099/13500872-141-2-411. [DOI] [PubMed] [Google Scholar]
  18. Garvey P., Rince A., Hill C., Fitzgerald G. F. Identification of a recA homolog (recALP) on the conjugative lactococcal phage resistance plasmid pNP40: evidence of a role for chromosomally encoded recAL in abortive infection. Appl Environ Microbiol. 1997 Apr;63(4):1244–1251. doi: 10.1128/aem.63.4.1244-1251.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gasc A. M., Sicard N., Claverys J. P., Sicard A. M. Lack of SOS repair in Streptococcus pneumoniae. Mutat Res. 1980 Apr;70(2):157–165. doi: 10.1016/0027-5107(80)90155-4. [DOI] [PubMed] [Google Scholar]
  20. Gasson M. J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. doi: 10.1128/jb.154.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Geller B. L., Ivey R. G., Trempy J. E., Hettinger-Smith B. Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2. J Bacteriol. 1993 Sep;175(17):5510–5519. doi: 10.1128/jb.175.17.5510-5519.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heaton M. P., Neuhaus F. C. Biosynthesis of D-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J Bacteriol. 1992 Jul;174(14):4707–4717. doi: 10.1128/jb.174.14.4707-4717.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hoch J. A., Anagnostopoulos C. Chromosomal location and properties of radiation sensitivity mutations in Bacillus subtilis. J Bacteriol. 1970 Aug;103(2):295–301. doi: 10.1128/jb.103.2.295-301.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huang D. C., Novel M., Huang X. F., Novel G. Nonidentity between plasmid and chromosomal copies of ISS1-like sequences in Lactococcus lactis subsp. lactis CNRZ270 and their possible role in chromosomal integration of plasmid genes. Gene. 1992 Sep 1;118(1):39–46. doi: 10.1016/0378-1119(92)90246-l. [DOI] [PubMed] [Google Scholar]
  26. Humbert O., Prudhomme M., Hakenbeck R., Dowson C. G., Claverys J. P. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9052–9056. doi: 10.1073/pnas.92.20.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Joyce C. M., Grindley N. D. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 1984 May;158(2):636–643. doi: 10.1128/jb.158.2.636-643.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klenow H., Henningsen I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A. 1970 Jan;65(1):168–175. doi: 10.1073/pnas.65.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Krishna P., van de Sande J. H. Interaction of RecA protein with acidic phospholipids inhibits DNA-binding activity of RecA. J Bacteriol. 1990 Nov;172(11):6452–6458. doi: 10.1128/jb.172.11.6452-6458.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lage C., Leitão A. C. Membrane permeability and sensitivity to lethal heat are affected by lexA and recA mutations in Escherichia coli K12. Braz J Med Biol Res. 1994 Oct;27(10):2383–2389. [PubMed] [Google Scholar]
  32. Langella P., Chopin A. Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus. FEMS Microbiol Lett. 1989 Jul 15;51(1):149–152. doi: 10.1016/0378-1097(89)90498-9. [DOI] [PubMed] [Google Scholar]
  33. Langella P., Le Loir Y., Ehrlich S. D., Gruss A. Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol. 1993 Sep;175(18):5806–5813. doi: 10.1128/jb.175.18.5806-5813.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Le Bourgeois P., Lautier M., Mata M., Ritzenthaler P. New tools for the physical and genetic mapping of Lactococcus strains. Gene. 1992 Feb 1;111(1):109–114. doi: 10.1016/0378-1119(92)90610-2. [DOI] [PubMed] [Google Scholar]
  35. Lo R. Y., MacDonald L. E. Pasteurella haemolytica is highly sensitive to ultraviolet irradiation. Mutat Res. 1991 Jul;263(3):159–163. doi: 10.1016/0165-7992(91)90056-a. [DOI] [PubMed] [Google Scholar]
  36. Lopez P., Martinez S., Diaz A., Espinosa M., Lacks S. A. Characterization of the polA gene of Streptococcus pneumoniae and comparison of the DNA polymerase I it encodes to homologous enzymes from Escherichia coli and phage T7. J Biol Chem. 1989 Mar 5;264(7):4255–4263. [PubMed] [Google Scholar]
  37. Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992 Sep;174(17):5633–5638. doi: 10.1128/jb.174.17.5633-5638.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Maguin E., Prévost H., Ehrlich S. D., Gruss A. Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol. 1996 Feb;178(3):931–935. doi: 10.1128/jb.178.3.931-935.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mellon I., Champe G. N. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1292–1297. doi: 10.1073/pnas.93.3.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Minton K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol. 1994 Jul;13(1):9–15. doi: 10.1111/j.1365-2958.1994.tb00397.x. [DOI] [PubMed] [Google Scholar]
  41. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
  42. Ogasawara N., Yoshikawa H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol. 1992 Mar;6(5):629–634. doi: 10.1111/j.1365-2958.1992.tb01510.x. [DOI] [PubMed] [Google Scholar]
  43. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem. 1995 Jun 30;270(26):15598–15606. doi: 10.1074/jbc.270.26.15598. [DOI] [PubMed] [Google Scholar]
  44. Projan S. J., Carleton S., Novick R. P. Determination of plasmid copy number by fluorescence densitometry. Plasmid. 1983 Mar;9(2):182–190. doi: 10.1016/0147-619x(83)90019-7. [DOI] [PubMed] [Google Scholar]
  45. Radding C. M. Helical interactions in homologous pairing and strand exchange driven by RecA protein. J Biol Chem. 1991 Mar 25;266(9):5355–5358. [PubMed] [Google Scholar]
  46. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  47. Sedgwick S. G., Goodwin P. A. Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4172–4176. doi: 10.1073/pnas.82.12.4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sicard N. Possible correlation between transformability and deficiency in error-prone repair. J Bacteriol. 1983 May;154(2):995–997. doi: 10.1128/jb.154.2.995-997.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
  50. Van Vliet-Reedijk J. C., Planta R. J. The RHO4a and NUD1 genes on Saccharomyces cerevisiae chromosome XI. Yeast. 1993 Oct;9(10):1139–1147. doi: 10.1002/yea.320091015. [DOI] [PubMed] [Google Scholar]
  51. Zhang Y. W., Koyama T., Ogura K. Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. J Bacteriol. 1997 Feb;179(4):1417–1419. doi: 10.1128/jb.179.4.1417-1419.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES