Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(14):4501–4512. doi: 10.1128/jb.179.14.4501-4512.1997

The kdp system of Clostridium acetobutylicum: cloning, sequencing, and transcriptional regulation in response to potassium concentration.

A Treuner-Lange 1, A Kuhn 1, P Dürre 1
PMCID: PMC179285  PMID: 9226259

Abstract

The complete sequence of the kdp gene region of Clostridium acetobutylicum has been determined. This part of the chromosome comprises two small open reading frames (orfZ and orfY), putatively encoding hydrophobic peptides, and the genes kdpA, kdpB, kdpC, and kdpX, followed by an operon encoding a pair of sensor-effector regulatory proteins (KdpD and KdpE). Except for orfZ, orfY, and kdpX, all genes showed significant homology to the kdp genes of Escherichia coli, encoding a high-affinity potassium transport ATPase and its regulators. The complete genome sequence of Synechocystis sp. strain PCC 6803 and a recently published part of the Mycobacterium tuberculosis genome indicate the existence of a kdp system in these organisms as well, but all three systems comprise neither a second orf upstream of kdpA nor an additional kdpX gene. Expression of the clostridial kdp genes, including the unique kdpX gene, was found to be inducible by low potassium concentrations. A transcription start point could be mapped upstream of orfZ. A promoter upstream of kdpD was active only under noninducing conditions. Lowering the potassium content of the medium led to formation of a common transcript (orfZYkdpABCXDE), with a putative internal RNase E recognition site, which could be responsible for the instability of the common transcript. Except for the two small peptides, all gene products could be detected in in vitro transcription-translation experiments.

Full Text

The Full Text of this article is available as a PDF (717.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Siebers A., Altendorf K., Konings W. N. Isolation and characterization of the high-affinity K(+)-translocating ATPase from Rhodobacter sphaeroides. J Bacteriol. 1992 Nov;174(21):6911–6917. doi: 10.1128/jb.174.21.6911-6917.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Apirion D. Degradation of RNA in Escherichia coli. A hypothesis. Mol Gen Genet. 1973 May 28;122(4):313–322. doi: 10.1007/BF00269431. [DOI] [PubMed] [Google Scholar]
  4. Arraiano C., Yancey S. D., Kushner S. R. Identification of endonucleolytic cleavage sites involved in decay of Escherichia coli trxA mRNA. J Bacteriol. 1993 Feb;175(4):1043–1052. doi: 10.1128/jb.175.4.1043-1052.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belasco J. G., Higgins C. F. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988 Dec 10;72(1-2):15–23. doi: 10.1016/0378-1119(88)90123-0. [DOI] [PubMed] [Google Scholar]
  6. Booth I. R., Higgins C. F. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? FEMS Microbiol Rev. 1990 Jun;6(2-3):239–246. doi: 10.1111/j.1574-6968.1990.tb04097.x. [DOI] [PubMed] [Google Scholar]
  7. Bouvet P., Belasco J. G. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli. Nature. 1992 Dec 3;360(6403):488–491. doi: 10.1038/360488a0. [DOI] [PubMed] [Google Scholar]
  8. Buluwela L., Forster A., Boehm T., Rabbitts T. H. A rapid procedure for colony screening using nylon filters. Nucleic Acids Res. 1989 Jan 11;17(1):452–452. doi: 10.1093/nar/17.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buurman E. T., Kim K. T., Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem. 1995 Mar 24;270(12):6678–6685. doi: 10.1074/jbc.270.12.6678. [DOI] [PubMed] [Google Scholar]
  10. Cam K., Rome G., Krisch H. M., Bouché J. P. RNase E processing of essential cell division genes mRNA in Escherichia coli. Nucleic Acids Res. 1996 Aug 1;24(15):3065–3070. doi: 10.1093/nar/24.15.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chow D. C., Forte J. G. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol. 1995 Jan;198(Pt 1):1–17. doi: 10.1242/jeb.198.1.1. [DOI] [PubMed] [Google Scholar]
  12. Chow J., Dennis P. P. Coupling between mRNA synthesis and mRNA stability in Escherichia coli. Mol Microbiol. 1994 Mar;11(5):919–931. doi: 10.1111/j.1365-2958.1994.tb00371.x. [DOI] [PubMed] [Google Scholar]
  13. Cohen S. N., McDowall K. J. RNase E: still a wonderfully mysterious enzyme. Mol Microbiol. 1997 Mar;23(6):1099–1106. doi: 10.1111/j.1365-2958.1997.tb02593.x. [DOI] [PubMed] [Google Scholar]
  14. Cormack R. S., Mackie G. A. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro. J Mol Biol. 1992 Dec 20;228(4):1078–1090. doi: 10.1016/0022-2836(92)90316-c. [DOI] [PubMed] [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ehretsmann C. P., Carpousis A. J., Krisch H. M. mRNA degradation in procaryotes. FASEB J. 1992 Oct;6(13):3186–3192. doi: 10.1096/fasebj.6.13.1397840. [DOI] [PubMed] [Google Scholar]
  17. Fagan M. J., Saier M. H., Jr P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol. 1994 Jan;38(1):57–99. doi: 10.1007/BF00175496. [DOI] [PubMed] [Google Scholar]
  18. Fischer R. J., Helms J., Dürre P. Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol. 1993 Nov;175(21):6959–6969. doi: 10.1128/jb.175.21.6959-6969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gerischer U., Dürre P. Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum. J Bacteriol. 1990 Dec;172(12):6907–6918. doi: 10.1128/jb.172.12.6907-6918.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gerischer U., Dürre P. mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis. J Bacteriol. 1992 Jan;174(2):426–433. doi: 10.1128/jb.174.2.426-433.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hafer J., Siebers A., Bakker E. P. The high-affinity K+-translocating ATPase complex from Bacillus acidocaldarius consists of three subunits. Mol Microbiol. 1989 Apr;3(4):487–495. doi: 10.1111/j.1365-2958.1989.tb00195.x. [DOI] [PubMed] [Google Scholar]
  23. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  26. Mackie G. A., Genereaux J. L. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J Mol Biol. 1993 Dec 20;234(4):998–1012. doi: 10.1006/jmbi.1993.1654. [DOI] [PubMed] [Google Scholar]
  27. Marck C. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988 Mar 11;16(5):1829–1836. doi: 10.1093/nar/16.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDowall K. J., Kaberdin V. R., Wu S. W., Cohen S. N., Lin-Chao S. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature. 1995 Mar 16;374(6519):287–290. doi: 10.1038/374287a0. [DOI] [PubMed] [Google Scholar]
  29. Naureckiene S., Uhlin B. E. In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli. Mol Microbiol. 1996 Jul;21(1):55–68. doi: 10.1046/j.1365-2958.1996.6121101.x. [DOI] [PubMed] [Google Scholar]
  30. O'Brien R. W., Morris J. G. Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol. 1971 Nov;68(3):307–318. doi: 10.1099/00221287-68-3-307. [DOI] [PubMed] [Google Scholar]
  31. Polarek J. W., Williams G., Epstein W. The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli. J Bacteriol. 1992 Apr;174(7):2145–2151. doi: 10.1128/jb.174.7.2145-2151.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sauer U., Treuner A., Buchholz M., Santangelo J. D., Dürre P. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol. 1994 Nov;176(21):6572–6582. doi: 10.1128/jb.176.21.6572-6582.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
  34. Siebers A., Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988 Dec 1;178(1):131–140. doi: 10.1111/j.1432-1033.1988.tb14438.x. [DOI] [PubMed] [Google Scholar]
  35. Snavely M. D., Miller C. G., Maguire M. E. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem. 1991 Jan 15;266(2):815–823. [PubMed] [Google Scholar]
  36. Sugiura A., Nakashima K., Mizuno T. Sequence-directed DNA curvature in activator-binding sequence in the Escherichia coli kdp ABC promoter. Biosci Biotechnol Biochem. 1993 Feb;57(2):356–357. doi: 10.1271/bbb.57.356. [DOI] [PubMed] [Google Scholar]
  37. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  38. Voelkner P., Puppe W., Altendorf K. Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli. Eur J Biochem. 1993 Nov 1;217(3):1019–1026. doi: 10.1111/j.1432-1033.1993.tb18333.x. [DOI] [PubMed] [Google Scholar]
  39. Walderhaug M. O., Litwack E. D., Epstein W. Wide distribution of homologs of Escherichia coli Kdp K+-ATPase among gram-negative bacteria. J Bacteriol. 1989 Feb;171(2):1192–1195. doi: 10.1128/jb.171.2.1192-1195.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Walderhaug M. O., Polarek J. W., Voelkner P., Daniel J. M., Hesse J. E., Altendorf K., Epstein W. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J Bacteriol. 1992 Apr;174(7):2152–2159. doi: 10.1128/jb.174.7.2152-2159.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  42. Young M., Minton N. P., Staudenbauer W. L. Recent advances in the genetics of the clostridia. FEMS Microbiol Rev. 1989 Dec;5(4):301–325. doi: 10.1111/j.1574-6968.1989.tb03402.x. [DOI] [PubMed] [Google Scholar]
  43. Zilhão R., Cairrão F., Régnier P., Arraiano C. M. PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism. Mol Microbiol. 1996 Jun;20(5):1033–1042. doi: 10.1111/j.1365-2958.1996.tb02544.x. [DOI] [PubMed] [Google Scholar]
  44. von Gabain A., Belasco J. G., Schottel J. L., Chang A. C., Cohen S. N. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci U S A. 1983 Feb;80(3):653–657. doi: 10.1073/pnas.80.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES