Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(14):4538–4544. doi: 10.1128/jb.179.14.4538-4544.1997

Iron-regulated excretion of alpha-keto acids by Salmonella typhimurium.

R Reissbrodt 1, R Kingsley 1, W Rabsch 1, W Beer 1, M Roberts 1, P H Williams 1
PMCID: PMC179289  PMID: 9226263

Abstract

Excretion of alpha-keto acids by clinical isolates and laboratory strains of Salmonella typhimurium was determined by high-performance liquid chromatography analysis of culture supernatants. The levels of excretion increased markedly with increasing iron stress imposed by the presence of alpha,alpha'-dipyridyl or conalbumin in the medium. The major product was pyruvic acid, but significant concentrations of alpha-ketoglutaric acid, alpha-ketoisovaleric acid, and alpha-ketoisocaproic acid were also observed. Maximal excretion occurred at iron stress levels that initially inhibited bacterial growth; the concentration of alpha,alpha'-dipyridyl at which this was observed differed between strains depending on their ability to secrete and utilize siderophores, suggesting that the intracellular iron status was important in determining alpha-keto acid excretion. However, prolonged incubation of the siderophore-deficient S. typhimurium strain enb-7 under conditions of high iron stress resulted in significant delayed bacterial growth, promoted by tonB-dependent uptake of iron complexed with the high accumulated levels of pyruvic acid and other alpha-keto acids. Strain RB181, a fur derivative of enb-7, excreted massive amounts of alpha-keto acids into the culture medium even in the absence of any iron chelators (the concentration of pyruvic acid, for example, was >25 mM). Moreover, RB181 was able to grow and excrete alpha-keto acids in the presence of alpha,alpha'-dipyridyl at concentrations threefold greater than that which inhibited the growth of enb-7.

Full Text

The Full Text of this article is available as a PDF (185.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagg A., Neilands J. B. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry. 1987 Aug 25;26(17):5471–5477. doi: 10.1021/bi00391a039. [DOI] [PubMed] [Google Scholar]
  2. Carbonetti N. H., Williams P. H. A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infect Immun. 1984 Oct;46(1):7–12. doi: 10.1128/iai.46.1.7-12.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drechsel H., Thieken A., Reissbrodt R., Jung G., Winkelmann G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol. 1993 May;175(9):2727–2733. doi: 10.1128/jb.175.9.2727-2733.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evanylo L. P., Kadis S., Maudsley J. R. Siderophore production by Proteus mirabilis. Can J Microbiol. 1984 Aug;30(8):1046–1051. doi: 10.1139/m84-163. [DOI] [PubMed] [Google Scholar]
  5. Flossmann K. D., Feist H., Erler W. Endprodukte der Glucose-Fermentation von Pasteurella multocida und P. haemolytica. Z Allg Mikrobiol. 1976;16(4):259–262. doi: 10.1002/jobm.3630160404. [DOI] [PubMed] [Google Scholar]
  6. Foster J. W. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. doi: 10.1128/jb.173.21.6896-6902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol. 1992 Nov;6(22):3289–3297. doi: 10.1111/j.1365-2958.1992.tb02197.x. [DOI] [PubMed] [Google Scholar]
  8. Gruer M. J., Guest J. R. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology. 1994 Oct;140(Pt 10):2531–2541. doi: 10.1099/00221287-140-10-2531. [DOI] [PubMed] [Google Scholar]
  9. HENRIKSEN S. D. A comparison of the phenylpyruvic acid reaction and the urease test in the differentiation of Proteus from other enteric organisms. J Bacteriol. 1950 Sep;60(3):225–231. doi: 10.1128/jb.60.3.225-231.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hancock R. E., Hantke K., Braun V. Iron transport of Escherichia coli K-12: involvement of the colicin B receptor and of a citrate-inducible protein. J Bacteriol. 1976 Sep;127(3):1370–1375. doi: 10.1128/jb.127.3.1370-1375.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hantke K. Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet. 1984;197(2):337–341. doi: 10.1007/BF00330982. [DOI] [PubMed] [Google Scholar]
  12. Hantke K. Dihydroxybenzoylserine--a siderophore for E. coli. FEMS Microbiol Lett. 1990 Jan 15;55(1-2):5–8. doi: 10.1016/0378-1097(90)90158-m. [DOI] [PubMed] [Google Scholar]
  13. Hantke K. Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol Gen Genet. 1987 Nov;210(1):135–139. doi: 10.1007/BF00337769. [DOI] [PubMed] [Google Scholar]
  14. Hayashi T., Tsuchiya H., Todoriki H., Naruse H. High-performance liquid chromatographic determination of alpha-keto acids in human urine and plasma. Anal Biochem. 1982 May 1;122(1):173–179. doi: 10.1016/0003-2697(82)90267-6. [DOI] [PubMed] [Google Scholar]
  15. Heuck D., Beer W., Reissbrodt R. Iron supply of staphylococci and of micrococci by alpha-ketoacids. J Med Microbiol. 1995 Jul;43(1):26–32. doi: 10.1099/00222615-43-1-26. [DOI] [PubMed] [Google Scholar]
  16. Kingsley R., Rabsch W., Roberts M., Reissbrodt R., Williams P. H. TonB-dependent iron supply in Salmonella by alpha-ketoacids and alpha-hydroxyacids. FEMS Microbiol Lett. 1996 Jun 15;140(1):65–70. doi: 10.1111/j.1574-6968.1996.tb08316.x. [DOI] [PubMed] [Google Scholar]
  17. Kingsley R., Rabsch W., Stephens P., Roberts M., Reissbrodt R., Williams P. H. Iron supplying systems of Salmonella in diagnostics, epidemiology and infection. FEMS Immunol Med Microbiol. 1995 Jul;11(4):257–264. doi: 10.1111/j.1574-695X.1995.tb00154.x. [DOI] [PubMed] [Google Scholar]
  18. Kochan I., Wasynczuk J., McCabe M. A. Effects of injected iron and siderophores on infections in normal and immune mice. Infect Immun. 1978 Nov;22(2):560–567. doi: 10.1128/iai.22.2.560-567.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luckey M., Pollack J. R., Wayne R., Ames B. N., Neilands J. B. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol. 1972 Sep;111(3):731–738. doi: 10.1128/jb.111.3.731-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Massad G., Zhao H., Mobley H. L. Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J Bacteriol. 1995 Oct;177(20):5878–5883. doi: 10.1128/jb.177.20.5878-5883.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore D. G., Yancey R. J., Lankford C. E., Earhart C. F. Bacteriostatic enterochelin-specific immunoglobulin from normal human serum. Infect Immun. 1980 Feb;27(2):418–423. doi: 10.1128/iai.27.2.418-423.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pollack J. R., Ames B. N., Neilands J. B. Iron transport in Salmonella typhimurium: mutants blocked in the biosynthesis of enterobactin. J Bacteriol. 1970 Nov;104(2):635–639. doi: 10.1128/jb.104.2.635-639.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prodromou C., Artymiuk P. J., Guest J. R. The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem. 1992 Mar 1;204(2):599–609. doi: 10.1111/j.1432-1033.1992.tb16673.x. [DOI] [PubMed] [Google Scholar]
  24. Rabsch W., Reissbrodt R. Investigations of Salmonella strains from different clinical-epidemiological origin with phenolate and hydroxamate (aerobactin)--siderophore bioassays. J Hyg Epidemiol Microbiol Immunol. 1988;32(3):353–360. [PubMed] [Google Scholar]
  25. Rabsch W., Tkacik J., Lindemann W., Mikula I., Reissbrodt R. Different systems for iron supply of Salmonella typhimurium and Escherichia coli wild strains as tool for typing. Zentralbl Bakteriol. 1991 Jan;274(4):437–445. doi: 10.1016/s0934-8840(11)80079-4. [DOI] [PubMed] [Google Scholar]
  26. Raunio R. Accumulation of keto acids during the growth cycle of Escherichia coli. Acta Chem Scand. 1966;20(1):11–16. doi: 10.3891/acta.chem.scand.20-0011. [DOI] [PubMed] [Google Scholar]
  27. Reissbrodt R., Erler W., Winkelmann G. Iron supply of Pasteurella multocida and Pasteurella haemolytica. J Basic Microbiol. 1994;34(1):61–63. doi: 10.1002/jobm.3620340114. [DOI] [PubMed] [Google Scholar]
  28. Reissbrodt R., Rabsch W. Further differentiation of Enterobacteriaceae by means of siderophore-pattern analysis. Zentralbl Bakteriol Mikrobiol Hyg A. 1988 May;268(3):306–317. doi: 10.1016/s0176-6724(88)80015-4. [DOI] [PubMed] [Google Scholar]
  29. Reissbrodt R., Ramiandrasoa F., Bricard L., Kunesch G. Siderophore activity of chemically synthesized dihydroxybenzoyl derivatives of spermidines and cystamide. Biometals. 1997 Apr;10(2):95–103. doi: 10.1023/a:1018327122629. [DOI] [PubMed] [Google Scholar]
  30. Tsolis R. M., Bäumler A. J., Stojiljkovic I., Heffron F. Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol. 1995 Aug;177(16):4628–4637. doi: 10.1128/jb.177.16.4628-4637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wagegg W., Braun V. Ferric citrate transport in Escherichia coli requires outer membrane receptor protein fecA. J Bacteriol. 1981 Jan;145(1):156–163. doi: 10.1128/jb.145.1.156-163.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilkins T. D., Lankford C. E. Production by Salmonella typhimurium of 2,3-dihydroxybenzoylserine, and its stimulation of growth in human serum. J Infect Dis. 1970 Feb;121(2):129–136. doi: 10.1093/infdis/121.2.129. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES