Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Jul;179(14):4607–4615. doi: 10.1128/jb.179.14.4607-4615.1997

A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough).

H L Lumppio 1, N V Shenvi 1, R P Garg 1, A O Summers 1, D M Kurtz Jr 1
PMCID: PMC179298  PMID: 9226272

Abstract

Rubrerythrin is a nonheme iron protein of unknown function isolated from Desulfovibrio vulgaris (Hildenborough). We have sequenced a 3.3-kbp Sal1 fragment of D. vulgaris chromosomal DNA containing the rubrerythrin gene, rbr, identified additional open reading frames (ORFs) adjacent to rbr, and shown that these ORFs are part of a transcriptional unit containing rbr. One ORF, designated fur, lies just upstream of rbr and encodes a 128-amino-acid-residue protein which shows homology to Fur (ferric uptake regulatory) proteins from other purple bacteria. The other ORF, designated rdl, lies just downstream of rbr and encodes a 74-residue protein with significant sequence homology to rubredoxins but with a different number and spacing of cysteine residues. Overexpression of rdl in Escherichia coli yielded a protein, Rdl, which has spectroscopic properties and iron content consistent with one Fe3+(SCys)4 site per polypeptide but is clearly distinct from both rubrerythrin and a related protein, nigerythrin. Northern analysis indicated that fur, rbr, and rdl were each present on a transcript of 1.3 kb; i.e., these three genes are cotranscribed. Because D. vulgaris nigerythrin appears to be closely related to rubrerythrin, and its function is also unknown, we cloned and sequenced the gene encoding nigerythrin, ngr. The amino acid sequence of nigerythrin is 33% identical to that of rubrerythrin, and all residues which furnish iron ligands to both the FeS4 and diiron-oxo sites in rubrerythrin are conserved in nigerythrin. Despite the close resemblance of these two proteins, ngr was found to be no closer than 7 kb to rbr on the D. vulgaris chromosome, and Northern analysis showed that, in contrast to rbr, ngr is not cotranscribed with other genes. Possible redox-linked functions for rubrerythrin and nigerythrin in iron homeostasis are proposed.

Full Text

The Full Text of this article is available as a PDF (500.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Benson D. A., Boguski M., Lipman D. J., Ostell J. GenBank. Nucleic Acids Res. 1996 Jan 1;24(1):1–5. doi: 10.1093/nar/24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blake P. R., Park J. B., Bryant F. O., Aono S., Magnuson J. K., Eccleston E., Howard J. B., Summers M. F., Adams M. W. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry. 1991 Nov 12;30(45):10885–10895. doi: 10.1021/bi00109a012. [DOI] [PubMed] [Google Scholar]
  4. Brumlik M. J., Voordouw G. Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough. J Bacteriol. 1989 Sep;171(9):4996–5004. doi: 10.1128/jb.171.9.4996-5004.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  6. Devreese B., Tavares P., Lampreia J., Van Damme N., Le Gall J., Moura J. J., Van Beeumen J., Moura I. Primary structure of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, a new class of non-heme iron proteins. FEBS Lett. 1996 May 6;385(3):138–142. doi: 10.1016/0014-5793(96)00364-x. [DOI] [PubMed] [Google Scholar]
  7. Dolla A., Fu R., Brumlik M. J., Voordouw G. Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli. J Bacteriol. 1992 Mar;174(6):1726–1733. doi: 10.1128/jb.174.6.1726-1733.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flint Dennis H., Allen Ronda M. Ironminus signSulfur Proteins with Nonredox Functions. Chem Rev. 1996 Nov 7;96(7):2315–2334. doi: 10.1021/cr950041r. [DOI] [PubMed] [Google Scholar]
  9. Gupta N., Bonomi F., Kurtz D. M., Jr, Ravi N., Wang D. L., Huynh B. H. Recombinant Desulfovibrio vulgaris rubrerythrin. Isolation and characterization of the diiron domain. Biochemistry. 1995 Mar 14;34(10):3310–3318. doi: 10.1021/bi00010a021. [DOI] [PubMed] [Google Scholar]
  10. Hall H. K., Foster J. W. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol. 1996 Oct;178(19):5683–5691. doi: 10.1128/jb.178.19.5683-5691.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hansen T. A. Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek. 1994;66(1-3):165–185. doi: 10.1007/BF00871638. [DOI] [PubMed] [Google Scholar]
  12. Hassett D. J., Sokol P. A., Howell M. L., Ma J. F., Schweizer H. T., Ochsner U., Vasil M. L. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol. 1996 Jul;178(14):3996–4003. doi: 10.1128/jb.178.14.3996-4003.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson B. H., Hecht M. H. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology (N Y) 1994 Dec;12(13):1357–1360. doi: 10.1038/nbt1294-1357. [DOI] [PubMed] [Google Scholar]
  14. Kurtz D. M., Jr, Prickril B. C. Intrapeptide sequence homology in rubrerythrin from Desulfovibrio vulgaris: identification of potential ligands to the diiron site. Biochem Biophys Res Commun. 1991 Nov 27;181(1):337–341. doi: 10.1016/s0006-291x(05)81423-8. [DOI] [PubMed] [Google Scholar]
  15. Le Gall J., Xavier A. V. Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe. 1996 Feb;2(1):1–9. doi: 10.1006/anae.1996.0001. [DOI] [PubMed] [Google Scholar]
  16. Lehmann Y., Meile L., Teuber M. Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J Bacteriol. 1996 Dec;178(24):7152–7158. doi: 10.1128/jb.178.24.7152-7158.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu M. Y., Le Gall J. Purification and characterization of two proteins with inorganic pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin and a new, highly active, enzyme. Biochem Biophys Res Commun. 1990 Aug 31;171(1):313–318. doi: 10.1016/0006-291x(90)91394-8. [DOI] [PubMed] [Google Scholar]
  18. Lovenberg W. Clostridial rubredoxin. Methods Enzymol. 1972;24:477–480. doi: 10.1016/0076-6879(72)24093-9. [DOI] [PubMed] [Google Scholar]
  19. Messing J., Gronenborn B., Müller-Hill B., Hans Hopschneider P. Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3642–3646. doi: 10.1073/pnas.74.9.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moura I., Tavares P., Ravi N. Characterization of three proteins containing multiple iron sites: rubrerythrin, desulfoferrodoxin, and a protein containing a six-iron cluster. Methods Enzymol. 1994;243:216–240. doi: 10.1016/0076-6879(94)43017-9. [DOI] [PubMed] [Google Scholar]
  21. Neilands J. B. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995 Nov 10;270(45):26723–26726. doi: 10.1074/jbc.270.45.26723. [DOI] [PubMed] [Google Scholar]
  22. Nordlund P., Eklund H. Di-iron-carboxylate proteins. Curr Opin Struct Biol. 1995 Dec;5(6):758–766. doi: 10.1016/0959-440x(95)80008-5. [DOI] [PubMed] [Google Scholar]
  23. O'Halloran T. V. Transition metals in control of gene expression. Science. 1993 Aug 6;261(5122):715–725. doi: 10.1126/science.8342038. [DOI] [PubMed] [Google Scholar]
  24. Pianzzola M. J., Soubes M., Touati D. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol. 1996 Dec;178(23):6736–6742. doi: 10.1128/jb.178.23.6736-6742.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pierik A. J., Wolbert R. B., Portier G. L., Verhagen M. F., Hagen W. R. Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem. 1993 Feb 15;212(1):237–245. doi: 10.1111/j.1432-1033.1993.tb17655.x. [DOI] [PubMed] [Google Scholar]
  26. Prickril B. C., Kurtz D. M., Jr, LeGall J., Voordouw G. Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough). Biochemistry. 1991 Nov 19;30(46):11118–11123. doi: 10.1021/bi00110a014. [DOI] [PubMed] [Google Scholar]
  27. Prince R. W., Cox C. D., Vasil M. L. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol. 1993 May;175(9):2589–2598. doi: 10.1128/jb.175.9.2589-2598.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reikofski J., Tao B. Y. Polymerase chain reaction (PCR) techniques for site-directed mutagenesis. Biotechnol Adv. 1992;10(4):535–547. doi: 10.1016/0734-9750(92)91451-j. [DOI] [PubMed] [Google Scholar]
  29. Richie K. A., Teng Q., Elkin C. J., Kurtz D. M., Jr 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability. Protein Sci. 1996 May;5(5):883–894. doi: 10.1002/pro.5560050510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robson R. L., Chesshyre J. A., Wheeler C., Jones R., Woodley P. R., Postgate J. R. Genome size and complexity in Azotobacter chroococcum. J Gen Microbiol. 1984 Jul;130(7):1603–1612. doi: 10.1099/00221287-130-7-1603. [DOI] [PubMed] [Google Scholar]
  31. Rocha E. R., Andrews S. C., Keen J. N., Brock J. H. Isolation of a ferritin from Bacteroides fragilis. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):207–212. doi: 10.1016/0378-1097(92)90430-v. [DOI] [PubMed] [Google Scholar]
  32. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  33. Sieker L. C., Stenkamp R. E., LeGall J. Rubredoxin in crystalline state. Methods Enzymol. 1994;243:203–216. doi: 10.1016/0076-6879(94)43016-0. [DOI] [PubMed] [Google Scholar]
  34. Smith E. T., Cornett D. S., Amster I. J., Adams M. W. Protein molecular weight determinations by MALD mass spectrometry: a superior alternative to gel filtration. Anal Biochem. 1993 Mar;209(2):379–380. doi: 10.1006/abio.1993.1140. [DOI] [PubMed] [Google Scholar]
  35. Stojiljkovic I., Hantke K. Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol Gen Genet. 1995 Apr 20;247(2):199–205. doi: 10.1007/BF00705650. [DOI] [PubMed] [Google Scholar]
  36. Stokkermans J. P., Pierik A. J., Wolbert R. B., Hagen W. R., Van Dongen W. M., Veeger C. The primary structure of a protein containing a putative [6Fe-6S] prismane cluster from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 1992 Sep 1;208(2):435–442. doi: 10.1111/j.1432-1033.1992.tb17205.x. [DOI] [PubMed] [Google Scholar]
  37. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  38. Touati D., Jacques M., Tardat B., Bouchard L., Despied S. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol. 1995 May;177(9):2305–2314. doi: 10.1128/jb.177.9.2305-2314.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Voordouw G. The genus desulfovibrio: the centennial. Appl Environ Microbiol. 1995 Aug;61(8):2813–2819. doi: 10.1128/aem.61.8.2813-2819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. deMaré F., Kurtz D. M., Jr, Nordlund P. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat Struct Biol. 1996 Jun;3(6):539–546. doi: 10.1038/nsb0696-539. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES