Abstract
We investigated the capacity of the hyperthermophile Pyrococcus furiosus for DNA repair by measuring survival at high levels of 60Co gamma-irradiation. The P. furiosus 2-Mb chromosome was fragmented into pieces ranging from 500 kb to shorter than 30 kb at a dose of 2,500 Gy and was fully restored upon incubation at 95 degrees C. We suggest that recombination repair could be an extremely active repair mechanism in P. furiosus and that it might be an important determinant of survival of hyperthermophiles at high temperatures.
Full Text
The Full Text of this article is available as a PDF (319.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bouyoub A., Barbier G., Querellou J., Forterre P. A putative SOS repair gene (dinF-like) in a hyperthermophilic archaeon. Gene. 1995 Dec 29;167(1-2):147–149. doi: 10.1016/0378-1119(95)00651-6. [DOI] [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Chartier F., Laine B., Sautiere P. Characterization of the chromosomal protein MC1 from the thermophilic archaebacterium Methanosarcina sp. CHTI 55 and its effect on the thermal stability of DNA. Biochim Biophys Acta. 1988 Nov 10;951(1):149–156. doi: 10.1016/0167-4781(88)90035-8. [DOI] [PubMed] [Google Scholar]
- Daly M. J., Minton K. W. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1996 Aug;178(15):4461–4471. doi: 10.1128/jb.178.15.4461-4471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly M. J., Minton K. W. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1995 Oct;177(19):5495–5505. doi: 10.1128/jb.177.19.5495-5505.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly M. J., Ouyang L., Fuchs P., Minton K. W. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol. 1994 Jun;176(12):3508–3517. doi: 10.1128/jb.176.12.3508-3517.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grogan D. W. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol. 1996 Jun;178(11):3207–3211. doi: 10.1128/jb.178.11.3207-3211.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isabelle V., Franchet-Beuzit J., Sabattier R., Laine B., Spotheim-Maurizot M., Charlier M. Radioprotection of DNA by a DNA-binding protein: MC1 chromosomal protein from the archaebacterium Methanosarcina sp. CHTI55. Int J Radiat Biol. 1993 Jun;63(6):749–758. doi: 10.1080/09553009314552151. [DOI] [PubMed] [Google Scholar]
- Keller L. C., Maxcy R. B. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl Environ Microbiol. 1984 May;47(5):915–918. doi: 10.1128/aem.47.5.915-918.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krasin F., Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol. 1977 Oct 15;116(1):81–98. doi: 10.1016/0022-2836(77)90120-6. [DOI] [PubMed] [Google Scholar]
- Mattimore V., Battista J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 1996 Feb;178(3):633–637. doi: 10.1128/jb.178.3.633-637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minton K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol. 1994 Jul;13(1):9–15. doi: 10.1111/j.1365-2958.1994.tb00397.x. [DOI] [PubMed] [Google Scholar]
- Minton K. W. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat Res. 1996 May 15;363(1):1–7. doi: 10.1016/0921-8777(95)00014-3. [DOI] [PubMed] [Google Scholar]
- Peak M. J., Robb F. T., Peak J. G. Extreme resistance to thermally induced DNA backbone breaks in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1995 Nov;177(21):6316–6318. doi: 10.1128/jb.177.21.6316-6318.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resnick M. A. Similar responses to ionizing radiation of fungal and vertebrate cells and the importance of DNA doublestrand breaks. J Theor Biol. 1978 Apr 6;71(3):339–346. doi: 10.1016/0022-5193(78)90164-9. [DOI] [PubMed] [Google Scholar]
- Robb F. T., Park J. B., Adams M. W. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim Biophys Acta. 1992 Apr 17;1120(3):267–272. doi: 10.1016/0167-4838(92)90247-b. [DOI] [PubMed] [Google Scholar]
- Sandler S. J., Satin L. H., Samra H. S., Clark A. J. recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1996 Jun 1;24(11):2125–2132. doi: 10.1093/nar/24.11.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandman K., Perler F. B., Reeve J. N. Histone-encoding genes from Pyrococcus: evidence for members of the HMf family of archaeal histones in a non-methanogenic Archaeon. Gene. 1994 Dec 2;150(1):207–208. doi: 10.1016/0378-1119(94)90890-7. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]