Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4684–4688. doi: 10.1128/jb.179.15.4684-4688.1997

Presence of UDP-N-acetylmuramyl-hexapeptides and -heptapeptides in enterococci and staphylococci after treatment with ramoplanin, tunicamycin, or vancomycin.

D Billot-Klein 1, D Shlaes 1, D Bryant 1, D Bell 1, R Legrand 1, L Gutmann 1, J van Heijenoort 1
PMCID: PMC179312  PMID: 9244253

Abstract

Analyses of the peptidoglycan nucleotide precursor contents of enterococci and staphylococci treated with ramoplanin, tunicamycin, or vancomycin were carried out by high-pressure liquid chromatography coupled with mass spectrometry (MS). In all cases, a sharp increase in the UDP-N-actetylmuramoyl-pentapeptide or -pentadepsipeptide pool was observed. Concomitantly, new peptidoglycan nucleotide peptides of higher molecular masses with hexa- or heptapeptide moieties were identified: UDP-MurNAc-pentapeptide-Asp or pentadepsipeptide-Asp in enterococci and UDP-MurNAc-pentapeptide-Gly or -Ala and UDP-MurNAc-pentapeptide-Gly-Gly or -Ala-Gly in staphylococci. These new compounds are derivatives of normal UDP-MurNAc-pentapeptide or -pentadepsipeptide precursors with the extra amino acid(s) linked to the lysine epsilon-amino group as established by various analytical procedures (MS, MS-MS fragmentation, chemical analysis, and digestion with R39 D,D carboxypeptidase). Except for tunicamycin-treated cells, it was not possible to ascertain whether these unusual nucleotides were formed by direct addition of the amino acids to UDP-MurNAc-pentapeptide (or -pentadepsipeptide) or whether they arose by reverse reactions from lipid I intermediates to which the amino acids had been added.

Full Text

The Full Text of this article is available as a PDF (154.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Hobbs J. N., Jr, Richardson J. M., Riggin R. M. Biosynthesis of modified peptidoglycan precursors by vancomycin-resistant Enterococcus faecium. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):109–115. doi: 10.1016/0378-1097(92)90140-j. [DOI] [PubMed] [Google Scholar]
  2. Arthur M., Reynolds P., Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996 Oct;4(10):401–407. doi: 10.1016/0966-842X(96)10063-9. [DOI] [PubMed] [Google Scholar]
  3. Billot-Klein D., Gutmann L., Bryant D., Bell D., Van Heijenoort J., Grewal J., Shlaes D. M. Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics. J Bacteriol. 1996 Aug;178(15):4696–4703. doi: 10.1128/jb.178.15.4696-4703.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billot-Klein D., Gutmann L., Collatz E., van Heijenoort J. Analysis of peptidoglycan precursors in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992 Jul;36(7):1487–1490. doi: 10.1128/aac.36.7.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billot-Klein D., Gutmann L., Sablé S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994 Apr;176(8):2398–2405. doi: 10.1128/jb.176.8.2398-2405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billot-Klein D., Shlaes D., Bryant D., Bell D., van Heijenoort J., Gutmann L. Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type. Biochem J. 1996 Feb 1;313(Pt 3):711–715. doi: 10.1042/bj3130711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ciabatti R., Kettenring J. K., Winters G., Tuan G., Zerilli L., Cavalleri B. Ramoplanin (A-16686), a new glycolipodepsipeptide antibiotic. III. Structure elucidation. J Antibiot (Tokyo) 1989 Feb;42(2):254–267. doi: 10.7164/antibiotics.42.254. [DOI] [PubMed] [Google Scholar]
  8. Gutmann L., Billot-Klein D., al-Obeid S., Klare I., Francoual S., Collatz E., van Heijenoort J. Inducible carboxypeptidase activity in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992 Jan;36(1):77–80. doi: 10.1128/aac.36.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J Bacteriol. 1992 Sep;174(18):5982–5984. doi: 10.1128/jb.174.18.5982-5984.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol. 1994 Jan;176(1):260–264. doi: 10.1128/jb.176.1.260-264.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herwaldt L., Boyken L., Pfaller M. In vitro selection of resistance to vancomycin in bloodstream isolates of Staphylococcus haemolyticus and Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis. 1991 Dec;10(12):1007–1012. doi: 10.1007/BF01984921. [DOI] [PubMed] [Google Scholar]
  12. Kaatz G. W., Seo S. M., Dorman N. J., Lerner S. A. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis. 1990 Jul;162(1):103–108. doi: 10.1093/infdis/162.1.103. [DOI] [PubMed] [Google Scholar]
  13. MANDELSTAM P., LOERCHER R., STROMINGER J. L. A uridine diphosphoacetylmuramyl hexapeptide from penicillin-treated Streptococcus faecalis. J Biol Chem. 1962 Aug;237:2683–2688. [PubMed] [Google Scholar]
  14. Matsuhashi M., Dietrich C. P., Strominger J. L. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci U S A. 1965 Aug;54(2):587–594. doi: 10.1073/pnas.54.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mengin-Lecreulx D., Flouret B., van Heijenoort J. Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli. J Bacteriol. 1982 Sep;151(3):1109–1117. doi: 10.1128/jb.151.3.1109-1117.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mengin-Lecreulx D., Flouret B., van Heijenoort J. Pool levels of UDP N-acetylglucosamine and UDP N-acetylglucosamine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis. J Bacteriol. 1983 Jun;154(3):1284–1290. doi: 10.1128/jb.154.3.1284-1290.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Messer J., Reynolds P. E. Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):195–200. doi: 10.1016/0378-1097(92)90608-q. [DOI] [PubMed] [Google Scholar]
  18. Pallanza R., Berti M., Scotti R., Randisi E., Arioli V. A-16686, a new antibiotic from Actinoplanes. II. Biological properties. J Antibiot (Tokyo) 1984 Apr;37(4):318–324. doi: 10.7164/antibiotics.37.318. [DOI] [PubMed] [Google Scholar]
  19. Plapp R., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens. J Biol Chem. 1970 Jul 25;245(14):3667–3674. [PubMed] [Google Scholar]
  20. Reynolds P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943–950. doi: 10.1007/BF01967563. [DOI] [PubMed] [Google Scholar]
  21. Rosato A., Pierre J., Billot-Klein D., Buu-Hoi A., Gutmann L. Inducible and constitutive expression of resistance to glycopeptides and vancomycin dependence in glycopeptide-resistant Enterococcus avium. Antimicrob Agents Chemother. 1995 Apr;39(4):830–833. doi: 10.1128/aac.39.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Somner E. A., Reynolds P. E. Inhibition of peptidoglycan biosynthesis by ramoplanin. Antimicrob Agents Chemother. 1990 Mar;34(3):413–419. doi: 10.1128/aac.34.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staudenbauer W., Strominger J. L. Activation of D-aspartic acid for incorporation into peptidoglycan. J Biol Chem. 1972 Aug 25;247(16):5095–5102. [PubMed] [Google Scholar]
  25. Swenson J. C., Neuhaus F. C. Biosynthesis of peptidoglycan in Staphylococcus aureus: incorporation of the Nepsilon-Ala-Lys moiety into the peptide subunit of nascent peptidoglycan. J Bacteriol. 1976 Feb;125(2):626–634. doi: 10.1128/jb.125.2.626-634.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. al-Obeid S., Gutmann L., Shlaes D. M., Williamson R., Collatz E. Comparison of vancomycin-inducible proteins from four strains of Enterococci. FEMS Microbiol Lett. 1990 Jun 15;58(1):101–105. doi: 10.1016/0378-1097(90)90110-c. [DOI] [PubMed] [Google Scholar]
  27. de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem. 1992 Jun 5;267(16):11248–11254. [PubMed] [Google Scholar]
  28. de Jonge B. L., Sidow T., Chang Y. S., Labischinski H., Berger-Bachi B., Gage D. A., Tomasz A. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J Bacteriol. 1993 May;175(9):2779–2782. doi: 10.1128/jb.175.9.2779-2782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES