Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4761–4767. doi: 10.1128/jb.179.15.4761-4767.1997

Topographical and functional investigation of Escherichia coli penicillin-binding protein 1b by alanine stretch scanning mutagenesis.

F Lefèvre 1, M H Rémy 1, J M Masson 1
PMCID: PMC179322  PMID: 9244263

Abstract

Penicillin-binding proteins (PBPs) are the targets of beta-lactam antibiotics. We have used a systematic five-alanine substitution method (called ASS [alanine stretch scanning] mutagenesis) to investigate the functional or structural role of various stretches of amino acids in the PBP1b of Escherichia coli. To probe the specific activity of each variant, the antibiotic discs assay was used with strain QCB1 (delta ponB) in the presence of cefaloridine, which totally inhibits the complementing action of PBP1a. This in vivo test has been combined with a quick and efficient in vitro test of the penicillin-binding activity of each of these variants with fluorescent penicillin. This approach has enabled us to show an unexpected role of the N-terminal and C-terminal tails of PBP1b. Moreover, we have established the correct position in PBP1b of the SMN motif that, with the SXXK and the KTG motifs, constitutes the signature of the penicilloyl serine transferases family. Finally, we have shown that the transglycosylase and the transpeptidase domains are separated by an inert linker region, where substitutions and insertions can be made without hindering the in vivo and in vitro activity of the protein.

Full Text

The Full Text of this article is available as a PDF (244.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baquero M. R., Bouzon M., Quintela J. C., Ayala J. A., Moreno F. dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J Bacteriol. 1996 Dec;178(24):7106–7111. doi: 10.1128/jb.178.24.7106-7111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Broome-Smith J. K., Edelman A., Yousif S., Spratt B. G. The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding protein 1A and 1B of Escherichia coli K12. Eur J Biochem. 1985 Mar 1;147(2):437–446. doi: 10.1111/j.1432-1033.1985.tb08768.x. [DOI] [PubMed] [Google Scholar]
  4. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  5. Den Blaauwen T., Pas E., Edelman A., Spratt B. G., Nanninga N. Mapping of conformational epitopes of monoclonal antibodies against Escherichia coli penicillin-binding protein 1B (PBP 1B) by means of hybrid protein analysis: implications for the tertiary structure of PBP 1B. J Bacteriol. 1990 Dec;172(12):7284–7288. doi: 10.1128/jb.172.12.7284-7288.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Den Blaauwen T., Wientjes F. B., Kolk A. H., Spratt B. G., Nanninga N. Preparation and characterization of monoclonal antibodies against native membrane-bound penicillin-binding protein 1B of Escherichia coli. J Bacteriol. 1989 Mar;171(3):1394–1401. doi: 10.1128/jb.171.3.1394-1401.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  8. Edelman A., Bowler L., Broome-Smith J. K., Spratt B. G. Use of a beta-lactamase fusion vector to investigate the organization of penicillin-binding protein 1B in the cytoplasmic membrane of Escherichia coli. Mol Microbiol. 1987 Jul;1(1):101–106. doi: 10.1111/j.1365-2958.1987.tb00533.x. [DOI] [PubMed] [Google Scholar]
  9. Galleni M., Lakaye B., Lepage S., Jamin M., Thamm I., Joris B., Frère J. M. A new, highly sensitive method for the detection and quantification of penicillin-binding proteins. Biochem J. 1993 Apr 1;291(Pt 1):19–21. doi: 10.1042/bj2910019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ghuysen J. M. Bacterial active-site serine penicillin-interactive proteins and domains: mechanism, structure, and evolution. Rev Infect Dis. 1988 Jul-Aug;10(4):726–732. doi: 10.1093/clinids/10.4.726. [DOI] [PubMed] [Google Scholar]
  11. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  12. Heinz D. W., Baase W. A., Matthews B. W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3751–3755. doi: 10.1073/pnas.89.9.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henderson T. A., Templin M., Young K. D. Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol. 1995 Apr;177(8):2074–2079. doi: 10.1128/jb.177.8.2074-2079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishino F., Mitsui K., Tamaki S., Matsuhashi M. Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem Biophys Res Commun. 1980 Nov 17;97(1):287–293. doi: 10.1016/s0006-291x(80)80166-5. [DOI] [PubMed] [Google Scholar]
  15. Jelsch C., Mourey L., Masson J. M., Samama J. P. Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins. 1993 Aug;16(4):364–383. doi: 10.1002/prot.340160406. [DOI] [PubMed] [Google Scholar]
  16. Kato J., Suzuki H., Hirota Y. Dispensability of either penicillin-binding protein-1a or -1b involved in the essential process for cell elongation in Escherichia coli. Mol Gen Genet. 1985;200(2):272–277. doi: 10.1007/BF00425435. [DOI] [PubMed] [Google Scholar]
  17. Kato J., Suzuki H., Hirota Y. Overlapping of the coding regions for alpha and gamma components of penicillin-binding protein 1 b in Escherichia coli. Mol Gen Genet. 1984;196(3):449–457. doi: 10.1007/BF00436192. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lakaye B., Damblon C., Jamin M., Galleni M., Lepage S., Joris B., Marchand-Brynaert J., Frydrych C., Frere J. M. Synthesis, purification and kinetic properties of fluorescein-labelled penicillins. Biochem J. 1994 May 15;300(Pt 1):141–145. doi: 10.1042/bj3000141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lefèvre F., Rémy M. H., Masson J. M. Alanine-stretch scanning mutagenesis: a simple and efficient method to probe protein structure and function. Nucleic Acids Res. 1997 Jan 15;25(2):447–448. doi: 10.1093/nar/25.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  22. Lenfant F., Labia R., Masson J. M. Probing the active site of beta-lactamase R-TEM1 by informational suppression. Biochimie. 1990 Jun-Jul;72(6-7):495–503. doi: 10.1016/0300-9084(90)90073-p. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa J., Tamaki S., Tomioka S., Matsuhashi M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem. 1984 Nov 25;259(22):13937–13946. [PubMed] [Google Scholar]
  24. Nicholas R. A., Lamson D. R., Schultz D. E. Penicillin-binding protein 1B from Escherichia coli contains a membrane association site in addition to its transmembrane anchor. J Biol Chem. 1993 Mar 15;268(8):5632–5641. [PubMed] [Google Scholar]
  25. Nicholas R. A., Suzuki H., Hirota Y., Strominger J. L. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli. Biochemistry. 1985 Jul 2;24(14):3448–3453. doi: 10.1021/bi00335a009. [DOI] [PubMed] [Google Scholar]
  26. Pares S., Mouz N., Pétillot Y., Hakenbeck R., Dideberg O. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Biol. 1996 Mar;3(3):284–289. doi: 10.1038/nsb0396-284. [DOI] [PubMed] [Google Scholar]
  27. Pérez-Pérez J., Martínez-Caja C., Barbero J. L., Gutiérrez J. DnaK/DnaJ supplementation improves the periplasmic production of human granulocyte-colony stimulating factor in Escherichia coli. Biochem Biophys Res Commun. 1995 May 16;210(2):524–529. doi: 10.1006/bbrc.1995.1691. [DOI] [PubMed] [Google Scholar]
  28. Spratt B. G., Zhou J., Taylor M., Merrick M. J. Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol. 1996 Feb;19(3):639–640. doi: 10.1046/j.1365-2958.1996.442924.x. [DOI] [PubMed] [Google Scholar]
  29. Suzuki H., Kato J., Sakagami Y., Mori M., Suzuki A., Hirota Y. Conversion of the alpha component of penicillin-binding protein 1b to the beta component in Escherichia coli. J Bacteriol. 1987 Feb;169(2):891–893. doi: 10.1128/jb.169.2.891-893.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suzuki H., van Heijenoort Y., Tamura T., Mizoguchi J., Hirota Y., van Heijenoort J. In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K-12. FEBS Lett. 1980 Feb 11;110(2):245–249. doi: 10.1016/0014-5793(80)80083-4. [DOI] [PubMed] [Google Scholar]
  31. Wang C. C., Schultz D. E., Nicholas R. A. Localization of a putative second membrane association site in penicillin-binding protein 1B of Escherichia coli. Biochem J. 1996 May 15;316(Pt 1):149–156. doi: 10.1042/bj3160149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waxman D. J., Strominger J. L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem. 1983;52:825–869. doi: 10.1146/annurev.bi.52.070183.004141. [DOI] [PubMed] [Google Scholar]
  33. Wilson I. A., Niman H. L., Houghten R. A., Cherenson A. R., Connolly M. L., Lerner R. A. The structure of an antigenic determinant in a protein. Cell. 1984 Jul;37(3):767–778. doi: 10.1016/0092-8674(84)90412-4. [DOI] [PubMed] [Google Scholar]
  34. Yousif S. Y., Broome-Smith J. K., Spratt B. G. Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J Gen Microbiol. 1985 Oct;131(10):2839–2845. doi: 10.1099/00221287-131-10-2839. [DOI] [PubMed] [Google Scholar]
  35. den Blaauwen T., Aarsman M., Nanninga N. Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein 1b of Escherichia coli. J Bacteriol. 1990 Jan;172(1):63–70. doi: 10.1128/jb.172.1.63-70.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES