Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4795–4801. doi: 10.1128/jb.179.15.4795-4801.1997

Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system.

H Taniguchi 1, B Chang 1, C Abe 1, Y Nikaido 1, Y Mizuguchi 1, S I Yoshida 1
PMCID: PMC179326  PMID: 9244267

Abstract

We examined the molecular mechanisms of resistance to kanamycin and viomycin in Mycobacterium smegmatis. All of the M. smegmatis strains with high-level kanamycin resistance had a nucleotide substitution from A to G at position 1389 of the 16S rRNA gene (rrs). This position is equivalent to position 1408 of Escherichia coli, and mutation at this position is known to cause aminoglycoside resistance. Mutations from G to A or G to T at position 1473 of the M. smegmatis rrs gene were found in viomycin-resistant mutants which had been designated vicB mutants in our earlier studies. Using the M. smegmatis conjugation system, we confirmed that these mutations indeed contributed to kanamycin and viomycin resistance, and kanamycin susceptibility was dominant over resistance in a heterogenomic strain. Additional experiments showed that three of four Mycobacterium tuberculosis strains with high-level kanamycin resistance had a mutation from A to G at position 1400, which was equivalent to position 1389 of M. smegmatis.

Full Text

The Full Text of this article is available as a PDF (431.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apirion D., Schlessinger D. Coresistance to neomycin and kanamycin by mutations in an Escherichia coli locus that affects ribosomes. J Bacteriol. 1968 Sep;96(3):768–776. doi: 10.1128/jb.96.3.768-776.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  3. Beauclerk A. A., Cundliffe E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol. 1987 Feb 20;193(4):661–671. doi: 10.1016/0022-2836(87)90349-4. [DOI] [PubMed] [Google Scholar]
  4. Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986 May 14;136(3):1136–1141. doi: 10.1016/0006-291x(86)90452-3. [DOI] [PubMed] [Google Scholar]
  5. De Stasio E. A., Moazed D., Noller H. F., Dahlberg A. E. Mutations in 16S ribosomal RNA disrupt antibiotic--RNA interactions. EMBO J. 1989 Apr;8(4):1213–1216. doi: 10.1002/j.1460-2075.1989.tb03494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–1246. doi: 10.1111/j.1365-2958.1993.tb01253.x. [DOI] [PubMed] [Google Scholar]
  7. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  8. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ji Y. E., Colston M. J., Cox R. A. The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slow-growers. Microbiology. 1994 Oct;140(Pt 10):2829–2840. doi: 10.1099/00221287-140-10-2829. [DOI] [PubMed] [Google Scholar]
  10. Kempsell K. E., Ji Y. E., Estrada I. C., Colston M. J., Cox R. A. The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J Gen Microbiol. 1992 Aug;138(Pt 8):1717–1727. doi: 10.1099/00221287-138-8-1717. [DOI] [PubMed] [Google Scholar]
  11. Misumi M., Tanaka N. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun. 1980 Jan 29;92(2):647–654. doi: 10.1016/0006-291x(80)90382-4. [DOI] [PubMed] [Google Scholar]
  12. Mizuguchi Y. Effect of ultraviolet-sensitive mutants on gene inheritance in mycobacterial matings. J Bacteriol. 1974 Feb;117(2):914–916. doi: 10.1128/jb.117.2.914-916.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mizuguchi Y., Suga K., Masuda K., Yamada T. Genetic and biochemical studies on drug-resistant mutants in Mycobacterium smegmatis. Jpn J Microbiol. 1974 Nov;18(6):457–462. doi: 10.1111/j.1348-0421.1974.tb00834.x. [DOI] [PubMed] [Google Scholar]
  14. Mizuguchi Y., Suga K., Yamada T. Interaction between 30 S ribosomal components in a viomycin resistant mutant of Mycobacterium smegmatis. Microbiol Immunol. 1979;23(7):595–604. doi: 10.1111/j.1348-0421.1979.tb00500.x. [DOI] [PubMed] [Google Scholar]
  15. Mizuguchi Y., Suga K., Yamada T. Interactions between viomycin resistance and streptomycin resistance on ribosomes of Mycobacterium smegmatis. Microbiol Immunol. 1979;23(7):581–594. doi: 10.1111/j.1348-0421.1979.tb00499.x. [DOI] [PubMed] [Google Scholar]
  16. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  17. Nair J., Rouse D. A., Bai G. H., Morris S. L. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol. 1993 Nov;10(3):521–527. doi: 10.1111/j.1365-2958.1993.tb00924.x. [DOI] [PubMed] [Google Scholar]
  18. Rogall T., Wolters J., Flohr T., Böttger E. C. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990 Oct;40(4):323–330. doi: 10.1099/00207713-40-4-323. [DOI] [PubMed] [Google Scholar]
  19. Saito T., Fukuhara Y. [Cross resistance of tubercle bacilli to KM, VM, CPM, LVM, and TUM. II. The susceptibility of antibiotic-resistant strains which were obtained in vitro to the five antibiotics (author's transl)]. Kekkaku. 1974 Apr;49(4):91–96. [PubMed] [Google Scholar]
  20. Sander P., Prammananan T., Böttger E. C. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol Microbiol. 1996 Dec;22(5):841–848. doi: 10.1046/j.1365-2958.1996.01532.x. [DOI] [PubMed] [Google Scholar]
  21. Suga K., Mizuguchi Y. Mapping of antibiotic resistance markers in Mycobacterium smegmatis. Jpn J Microbiol. 1974 Mar;18(2):139–147. doi: 10.1111/j.1348-0421.1974.tb00802.x. [DOI] [PubMed] [Google Scholar]
  22. Suzuki Y., Nagata A., Ono Y., Yamada T. Complete nucleotide sequence of the 16S rRNA gene of Mycobacterium bovis BCG. J Bacteriol. 1988 Jun;170(6):2886–2889. doi: 10.1128/jb.170.6.2886-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taniguchi H., Aramaki H., Nikaido Y., Mizuguchi Y., Nakamura M., Koga T., Yoshida S. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett. 1996 Oct 15;144(1):103–108. doi: 10.1111/j.1574-6968.1996.tb08515.x. [DOI] [PubMed] [Google Scholar]
  24. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  25. Tokunaga T., Mizuguchi Y., Suga K. Genetic recombination in mycobacteria. J Bacteriol. 1973 Mar;113(3):1104–1111. doi: 10.1128/jb.113.3.1104-1111.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamada T., Masuda K., Mizuguchi Y., Suga K. Altered ribosomes in antibiotic-resistant mutants of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1976 May;9(5):817–823. doi: 10.1128/aac.9.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamada T., Masuda K., Shoji K., Hori M. Pleiotropic antibiotic resistance mutations associated with ribosomes and ribosomal subunits in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1974 Jul;6(1):46–53. doi: 10.1128/aac.6.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamada T., Mizugichi Y., Nierhaus K. H., Wittmann H. G. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature. 1978 Oct 5;275(5679):460–461. doi: 10.1038/275460a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES