Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4831–4840. doi: 10.1128/jb.179.15.4831-4840.1997

A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains.

S B Hong 1, I Hwang 1, Y Dessaux 1, P Guyon 1, K S Kim 1, S K Farrand 1
PMCID: PMC179331  PMID: 9244272

Abstract

The mechanisms that ensure that Ti plasmid T-DNA genes encoding proteins involved in the biosynthesis of opines in crown gall tumors are always matched by Ti plasmid genes conferring the ability to catabolize that set of opines on the inducing Agrobacterium strains are unknown. The pathway for the biosynthesis of the opine agropine is thought to require an enzyme, mannopine cyclase, coded for by the ags gene located in the T(R) region of octopine-type Ti plasmids. Extracts prepared from agropine-type tumors contained an activity that cyclized mannopine to agropine. Tumor cells containing a T region in which ags was mutated lacked this activity and did not contain agropine. Expression of ags from the lac promoter conferred mannopine-lactonizing activity on Escherichia coli. Agrobacterium tumefaciens strains harboring an octopine-type Ti plasmid exhibit a similar activity which is not coded for by ags. Analysis of the DNA sequence of the gene encoding this activity, called agcA, showed it to be about 60% identical to T-DNA ags genes. Relatedness decreased abruptly in the 5' and 3' untranslated regions of the genes. ags is preceded by a promoter that functions only in the plant. Expression analysis showed that agcA also is preceded by its own promoter, which is active in the bacterium. Translation of agcA yielded a protein of about 45 kDa, consistent with the size predicted from the DNA sequence. Antibodies raised against the agcA product cross-reacted with the anabolic enzyme. These results indicate that the agropine system arose by a duplication of a progenitor gene, one copy of which became associated with the T-DNA and the other copy of which remained associated with the bacterium.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay R. S., Bruce W. B., Gurley W. B. Regulatory elements within the agropine synthase promoter of T-DNA. J Biol Chem. 1989 Nov 15;264(32):19399–19406. [PubMed] [Google Scholar]
  3. Bouchez D., Tourneur J. Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid. 1991 Jan;25(1):27–39. doi: 10.1016/0147-619x(91)90004-g. [DOI] [PubMed] [Google Scholar]
  4. Dessaux Y., Guyon P., Farrand S. K., Petit A., Tempé J. Agrobacterium Ti and Ri plasmids specify enzymic lactonization of mannopine to agropine. J Gen Microbiol. 1986 Sep;132(9):2549–2559. doi: 10.1099/00221287-132-9-2549. [DOI] [PubMed] [Google Scholar]
  5. Dessaux Y., Tempé J., Farrand S. K. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol Gen Genet. 1987 Jun;208(1-2):301–308. doi: 10.1007/BF00330457. [DOI] [PubMed] [Google Scholar]
  6. Hansen G., Larribe M., Vaubert D., Tempé J., Biermann B. J., Montoya A. L., Chilton M. D., Brevet J. Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7763–7767. doi: 10.1073/pnas.88.17.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  8. Holsters M., de Waele D., Depicker A., Messens E., van Montagu M., Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet. 1978 Jul 11;163(2):181–187. doi: 10.1007/BF00267408. [DOI] [PubMed] [Google Scholar]
  9. Hong S. B., Dessaux Y., Chilton W. S., Farrand S. K. Organization and regulation of the mannopine cyclase-associated opine catabolism genes in Agrobacterium tumefaciens 15955. J Bacteriol. 1993 Jan;175(2):401–410. doi: 10.1128/jb.175.2.401-410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hong S. B., Farrand S. K. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp. J Bacteriol. 1994 Jun;176(12):3576–3583. doi: 10.1128/jb.176.12.3576-3583.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hong S. B., Farrand S. K. Purification and characterization of catabolic mannopine cyclase encoded by the Agrobacterium tumefaciens Ti plasmid pTi15955. J Bacteriol. 1996 Apr;178(8):2427–2430. doi: 10.1128/jb.178.8.2427-2430.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim K. S., Chilton W. S., Farrand S. K. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors. J Bacteriol. 1996 Jun;178(11):3285–3292. doi: 10.1128/jb.178.11.3285-3292.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim K. S., Farrand S. K. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol. 1996 Jun;178(11):3275–3284. doi: 10.1128/jb.178.11.3275-3284.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  16. Montoya A. L., Chilton M. D., Gordon M. P., Sciaky D., Nester E. W. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol. 1977 Jan;129(1):101–107. doi: 10.1128/jb.129.1.101-107.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salomon F., Deblaere R., Leemans J., Hernalsteens J. P., Van Montagu M., Schell J. Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J. 1984 Jan;3(1):141–146. doi: 10.1002/j.1460-2075.1984.tb01774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sancar A., Hack A. M., Rupp W. D. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. doi: 10.1128/jb.137.1.692-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Savka M. A., Farrand S. K. Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol. 1992 Feb;98(2):784–789. doi: 10.1104/pp.98.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Savka M. A., Farrand S. K. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol. 1997 Apr;15(4):363–368. doi: 10.1038/nbt0497-363. [DOI] [PubMed] [Google Scholar]
  23. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  24. Vaudequin-Dransart V., Petit A., Poncet C., Ponsonnet C., Nesme X., Jones J. B., Bouzar H., Chilton W. S., Dessaux Y. Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. Mol Plant Microbe Interact. 1995 Mar-Apr;8(2):311–321. doi: 10.1094/mpmi-8-0311. [DOI] [PubMed] [Google Scholar]
  25. Wilson M., Savka M. A., Hwang I., Farrand S. K., Lindow S. E. Altered Epiphytic Colonization of Mannityl Opine-Producing Transgenic Tobacco Plants by a Mannityl Opine-Catabolizing Strain of Pseudomonas syringae. Appl Environ Microbiol. 1995 Jun;61(6):2151–2158. doi: 10.1128/aem.61.6.2151-2158.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zanker H., Lurz G., Langridge U., Langridge P., Kreusch D., Schröder J. Octopine and nopaline oxidases from Ti plasmids of Agrobacterium tumefaciens: molecular analysis, relationship, and functional characterization. J Bacteriol. 1994 Aug;176(15):4511–4517. doi: 10.1128/jb.176.15.4511-4517.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES