Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4850–4858. doi: 10.1128/jb.179.15.4850-4858.1997

Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10.

S I Sato 1, J W Nam 1, K Kasuga 1, H Nojiri 1, H Yamane 1, T Omori 1
PMCID: PMC179333  PMID: 9244274

Abstract

Nucleotide sequence analysis of the flanking regions of the carBC genes of Pseudomonas sp. strain CA10 revealed that there were two open reading frames (ORFs) ORF4 and ORF5, in the upstream region of carBC. Similarly, three ORFs, ORF6 to ORF8, were found in the downstream region of carBC. The deduced amino acid sequences of ORF6 and ORF8 showed homologies with ferredoxin and ferredoxin reductase components of bacterial multicomponent dioxygenase systems, respectively. ORF4 and ORF5 had the same sequence and were tandemly linked. Their deduced amino acid sequences showed about 30% homology with large (alpha) subunits of other terminal oxygenase components. Functional analysis using resting cells harboring the deleted plasmids revealed that the products of ORF4 and -5, ORF6, and ORF8 were terminal dioxygenase, ferredoxin, and ferredoxin reductase, respectively, of carbazole 1,9a-dioxygenase (CARDO), which attacks the angular position adjacent to the nitrogen atom of carbazole, and that the product of ORF7 is not indispensable for CARDO activity. Based on the results, ORF4, ORF5, ORF6, and ORF8 were designated carAa, carAa, carAc, and carAd, respectively. The products of carAa, carAd, and ORF7 were shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be polypeptides with molecular masses of 43, 36, and 11 kDa, respectively. However, the product of carAc was not detected in Escherichia coli. CARDO has the ability to oxidize a wide variety of polyaromatic compounds, including dibenzo-p-dioxin, dibenzofuran, biphenyl, and polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. Since 2,2',3-trihydroxydiphenyl ether and 2,2',3-trihydroxybiphenyl were identified as metabolites of dibenzo-p-dioxin and dibenzofuran, respectively, it was considered that CARDO attacked at the angular position adjacent to the oxygen atom of dibenzo-p-dioxin and dibenzofuran as in the case with carbazole.

Full Text

The Full Text of this article is available as a PDF (637.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcos J. C., Argus M. F. Molecular geometry and carcinogenic activity of aromatic compounds. New perspectives. Adv Cancer Res. 1968;11:305–471. doi: 10.1016/s0065-230x(08)60390-5. [DOI] [PubMed] [Google Scholar]
  2. Asturias J. A., Díaz E., Timmis K. N. The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene. 1995 Apr 14;156(1):11–18. doi: 10.1016/0378-1119(94)00530-6. [DOI] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byrne A. M., Kukor J. J., Olsen R. H. Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1. Gene. 1995 Feb 27;154(1):65–70. doi: 10.1016/0378-1119(94)00844-i. [DOI] [PubMed] [Google Scholar]
  5. Bünz P. V., Cook A. M. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol. 1993 Oct;175(20):6467–6475. doi: 10.1128/jb.175.20.6467-6475.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerniglia C. E., Morgan J. C., Gibson D. T. Bacterial and fungal oxidation of dibenzofuran. Biochem J. 1979 Apr 15;180(1):175–185. doi: 10.1042/bj1800175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eaton R. W., Timmis K. N. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol. 1986 Oct;168(1):123–131. doi: 10.1128/jb.168.1.123-131.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. doi: 10.1126/science.6353574. [DOI] [PubMed] [Google Scholar]
  9. Erickson B. D., Mondello F. J. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol. 1993 Nov;59(11):3858–3862. doi: 10.1128/aem.59.11.3858-3862.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fortnagel P., Harms H., Wittich R. M., Krohn S., Meyer H., Sinnwell V., Wilkes H., Francke W. Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27. Appl Environ Microbiol. 1990 Apr;56(4):1148–1156. doi: 10.1128/aem.56.4.1148-1156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grosser R. J., Warshawsky D., Vestal J. R. Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol. 1991 Dec;57(12):3462–3469. doi: 10.1128/aem.57.12.3462-3469.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harayama S., Kok M., Neidle E. L. Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol. 1992;46:565–601. doi: 10.1146/annurev.mi.46.100192.003025. [DOI] [PubMed] [Google Scholar]
  13. Harayama S., Rekik M., Timmis K. N. Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate 1,2-dioxygenase, encoded by TOL plasmid pWW0 of Pseudomonas putida. Mol Gen Genet. 1986 Feb;202(2):226–234. doi: 10.1007/BF00331641. [DOI] [PubMed] [Google Scholar]
  14. Harms H., Wittich R. M., Sinnwell V., Meyer H., Fortnagel P., Francke W. Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69. Appl Environ Microbiol. 1990 Apr;56(4):1157–1159. doi: 10.1128/aem.56.4.1157-1159.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  16. Hofer B., Backhaus S., Timmis K. N. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene. 1994 Jun 24;144(1):9–16. doi: 10.1016/0378-1119(94)90196-1. [DOI] [PubMed] [Google Scholar]
  17. Jiang H., Parales R. E., Lynch N. A., Gibson D. T. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J Bacteriol. 1996 Jun;178(11):3133–3139. doi: 10.1128/jb.178.11.3133-3139.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kikuchi Y., Nagata Y., Hinata M., Kimbara K., Fukuda M., Yano K., Takagi M. Identification of the bphA4 gene encoding ferredoxin reductase involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol. 1994 Mar;176(6):1689–1694. doi: 10.1128/jb.176.6.1689-1694.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobayashi T., Kurane R., Nakajima K., Nakamura Y., Kirimura K., Usami S. Isolation of bacteria degrading carbazole under microaerobic conditions, i.e. nitrogen gas substituted conditions. Biosci Biotechnol Biochem. 1995 May;59(5):932–933. doi: 10.1271/bbb.59.932. [DOI] [PubMed] [Google Scholar]
  20. Kurkela S., Lehväslaiho H., Palva E. T., Teeri T. H. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene. 1988 Dec 20;73(2):355–362. doi: 10.1016/0378-1119(88)90500-8. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 1995 Jun;61(6):2079–2085. doi: 10.1128/aem.61.6.2079-2085.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. doi: 10.1146/annurev.mi.46.100192.001425. [DOI] [PubMed] [Google Scholar]
  24. Neidle E. L., Hartnett C., Ornston L. N., Bairoch A., Rekik M., Harayama S. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol. 1991 Sep;173(17):5385–5395. doi: 10.1128/jb.173.17.5385-5395.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Otaka E., Ooi T. Examination of protein sequence homologies: V. New perspectives on evolution between bacterial and chloroplast-type ferredoxins inferred from sequence evidence. J Mol Evol. 1989 Sep;29(3):246–254. doi: 10.1007/BF02100208. [DOI] [PubMed] [Google Scholar]
  26. Sato S. I., Ouchiyama N., Kimura T., Nojiri H., Yamane H., Omori T. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol. 1997 Aug;179(15):4841–4849. doi: 10.1128/jb.179.15.4841-4849.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  28. Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., Suen W. C., Cruden D. L., Gibson D. T., Zylstra G. J. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 1993 May 15;127(1):31–37. doi: 10.1016/0378-1119(93)90613-8. [DOI] [PubMed] [Google Scholar]
  29. Taira K., Hirose J., Hayashida S., Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed] [Google Scholar]
  30. Tan H. M., Joannou C. L., Cooper C. E., Butler C. S., Cammack R., Mason J. R. The effect of ferredoxin(BED) overexpression on benzene dioxygenase activity in Pseudomonas putida ML2. J Bacteriol. 1994 May;176(9):2507–2512. doi: 10.1128/jb.176.9.2507-2512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  33. Werlen C., Kohler H. P., van der Meer J. R. The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem. 1996 Feb 23;271(8):4009–4016. doi: 10.1074/jbc.271.8.4009. [DOI] [PubMed] [Google Scholar]
  34. Wittich R. M., Wilkes H., Sinnwell V., Francke W., Fortnagel P. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol. 1992 Mar;58(3):1005–1010. doi: 10.1128/aem.58.3.1005-1010.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zylstra G. J., Gibson D. T. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES