Abstract
Thiamine pyrophosphate (TPP) is synthesized de novo in Salmonella typhimurium and is a required cofactor for many enzymes in the cell. Five kinase activities have been implicated in TPP synthesis, which involves joining a 4-methyl-5-(beta-hydroxyethyl)thiazole (THZ) moiety and a 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety. We report here identification of a 2-gene operon involved in thiamine biosynthesis and present evidence that the genes in this operon, thiMD, encode two previously identified kinases, THZ kinase and HMP phosphate (HMP-P) kinase, respectively. We further show that this operon belongs to the growing class of genes involved in TPP synthesis that are transcriptionally regulated by TPP. Our data are consistent with ThiM being a salvage enzyme and ThiD being a biosynthetic enzyme involved in TPP synthesis, as previously suggested.
Full Text
The Full Text of this article is available as a PDF (371.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
- Chen P., Ailion M., Weyand N., Roth J. The end of the cob operon: evidence that the last gene (cobT) catalyzes synthesis of the lower ligand of vitamin B12, dimethylbenzimidazole. J Bacteriol. 1995 Mar;177(6):1461–1469. doi: 10.1128/jb.177.6.1461-1469.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMoll E., Shive W. Determination of the metabolic origin of the sulfur atom in thiamin of Escherichia coli by mass spectrometry. Biochem Biophys Res Commun. 1985 Oct 15;132(1):217–222. doi: 10.1016/0006-291x(85)91010-1. [DOI] [PubMed] [Google Scholar]
- Downs D. M. Evidence for a new, oxygen-regulated biosynthetic pathway for the pyrimidine moiety of thiamine in Salmonella typhimurium. J Bacteriol. 1992 Mar;174(5):1515–1521. doi: 10.1128/jb.174.5.1515-1521.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downs D. M., Petersen L. apbA, a new genetic locus involved in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol. 1994 Aug;176(16):4858–4864. doi: 10.1128/jb.176.16.4858-4864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escalante-Semerena J. C., Roth J. R. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2251–2258. doi: 10.1128/jb.169.5.2251-2258.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estramareix B., Therisod M. La tyrosine, facteur de la biosynthèse du thiazole de la thiamine chez Escherichia coli. Biochim Biophys Acta. 1972 Jul 19;273(2):275–282. [PubMed] [Google Scholar]
- Imamura N., Nakayama H. thiD locus of Escherichia coli. Experientia. 1981 Dec 15;37(12):1265–1266. doi: 10.1007/BF01948350. [DOI] [PubMed] [Google Scholar]
- Imamura N., Nakayama H. thiK and thiL loci of Escherichia coli. J Bacteriol. 1982 Aug;151(2):708–717. doi: 10.1128/jb.151.2.708-717.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwashima A., Takahashi K., Nose Y. Overproduction of hydroxymethylpyrimidine by a thiamine regulatory mutant of Escherichia coli. J Vitaminol (Kyoto) 1971 Mar 10;17(1):43–48. doi: 10.5925/jnsv1954.17.43. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Nose Y. Thiamine regulatory mutants in Escherichia coli. J Biochem. 1969 Mar;65(3):417–425. doi: 10.1093/oxfordjournals.jbchem.a129029. [DOI] [PubMed] [Google Scholar]
- Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
- Mizote T., Nakayama H. The thiM locus and its relation to phosphorylation of hydroxyethylthiazole in Escherichia coli. J Bacteriol. 1989 Jun;171(6):3228–3232. doi: 10.1128/jb.171.6.3228-3232.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizote T., Tsuda M., Nakazawa T., Nakayama H. The thiJ locus and its relation to phosphorylation of hydroxymethylpyrimidine in Escherichia coli. Microbiology. 1996 Oct;142(Pt 10):2969–2974. doi: 10.1099/13500872-142-10-2969. [DOI] [PubMed] [Google Scholar]
- Nakayama H., Hayashi R. Biosynthetic pathway of thiamine pyrophosphate: a special reference to the thiamine monophosphate-requiring mutant and the thiamine pyrophosphate-requiring mutant of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1118–1126. doi: 10.1128/jb.112.3.1118-1126.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell P. C., Tucker R. G. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J. 1968 Jan;106(1):279–287. doi: 10.1042/bj1060279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell P. C., Tucker R. G. Precursors of the pyrimidine moiety of thiamine. Biochem J. 1968 Jan;106(1):271–277. doi: 10.1042/bj1060271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell P. C., Tucker R. G. The control mechanism of thiamine biosynthesis a model for the study of control of converging pathways. Biochem J. 1966 Aug;100(2):517–524. doi: 10.1042/bj1000517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nosaka K., Nishimura H., Kawasaki Y., Tsujihara T., Iwashima A. Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem. 1994 Dec 2;269(48):30510–30516. [PubMed] [Google Scholar]
- Petersen L., Downs D. M. Mutations in apbC (mrp) prevent function of the alternative pyrimidine biosynthetic pathway in Salmonella typhimurium. J Bacteriol. 1996 Oct;178(19):5676–5682. doi: 10.1128/jb.178.19.5676-5682.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen L., Enos-Berlage J., Downs D. M. Genetic analysis of metabolic crosstalk and its impact on thiamine synthesis in Salmonella typhimurium. Genetics. 1996 May;143(1):37–44. doi: 10.1093/genetics/143.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88. doi: 10.1007/BF00270447. [DOI] [PubMed] [Google Scholar]
- VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
- Vander Horn P. B., Backstrom A. D., Stewart V., Begley T. P. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J Bacteriol. 1993 Feb;175(4):982–992. doi: 10.1128/jb.175.4.982-992.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
- Webb E., Claas K., Downs D. M. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J Bacteriol. 1997 Jul;179(13):4399–4402. doi: 10.1128/jb.179.13.4399-4402.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb E., Downs D. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium. J Biol Chem. 1997 Jun 20;272(25):15702–15707. doi: 10.1074/jbc.272.25.15702. [DOI] [PubMed] [Google Scholar]
- Webb E., Febres F., Downs D. M. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J Bacteriol. 1996 May;178(9):2533–2538. doi: 10.1128/jb.178.9.2533-2538.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Taylor S. V., Chiu H. J., Begley T. P. Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. J Bacteriol. 1997 May;179(9):3030–3035. doi: 10.1128/jb.179.9.3030-3035.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurlinden A., Schweingruber M. E. Cloning, nucleotide sequence, and regulation of Schizosaccharomyces pombe thi4, a thiamine biosynthetic gene. J Bacteriol. 1994 Nov;176(21):6631–6635. doi: 10.1128/jb.176.21.6631-6635.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]