Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4909–4918. doi: 10.1128/jb.179.15.4909-4918.1997

Characterization of the pecT control region from Erwinia chrysanthemi 3937.

A Castillo 1, S Reverchon 1
PMCID: PMC179341  PMID: 9244282

Abstract

Erwinia chrysanthemi synthesizes and secretes pectate lyases that attack components of the plant cell wall and, therefore, play a major role in the pathogenesis of soft rot disease. We isolated a new mutant (designated pec-1), by Tn5 mutagenesis, that displays weak pectate lyase production and decreased motility and mucoidicity. Maceration and pathogenicity tests done on different plant organs showed that the pec-1 strain displays a reduced virulence compared to that of the parental strain. The Tn5 insertion was localized between the pelL and the out loci and defines a new regulatory region. Sequencing of the pec-1::Tn5 insertion revealed that pec-1 is tightly linked to the pecT regulatory gene that also controls pectate lyase synthesis. Moreover, the pecT mutation is dominant over the pec-1 mutation, suggesting that these two loci are involved in the same regulatory network. We demonstrated, by Northern blot analysis, that the pec-1::Tn5 insertion provokes derepression of pecT transcription and defines a cis-acting element. Introduction of the pecT gene in trans of a pecT::uidA fusion induced a decrease of pecT::uidA transcription, indicating a negative autoregulation. Band shift experiments confirmed that the PecT repressor specifically interacts with the pecT regulatory region. We also demonstrated that the PecT protein interacts with the regulatory region of the pelD gene encoding a pectate lyase. Therefore, the abolition of the pecT autoregulation in the pec-1 mutant provokes an overproduction of the PecT repressor that is responsible for the decrease of pectate lyase synthesis. Mutagenesis of the pecT regulatory region revealed the presence of two sites in which insertions reproduced the pec-1 phenotype. This result suggests that pecT autoregulation requires the presence of two functional operator sites. From this study, we propose that the PecT repressor binds to these two sites, generating a loop that blocks pecT transcription.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardonnet N., Blanco C. 'uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett. 1992 Jun 15;72(3):243–247. doi: 10.1016/0378-1097(92)90469-5. [DOI] [PubMed] [Google Scholar]
  2. Bertheau Y., Madgidi-Hervan E., Kotoujansky A., Nguyen-The C., Andro T., Coleno A. Detection of depolymerase isoenzymes after electrophoresis or electrofocusing, or in titration curves. Anal Biochem. 1984 Jun;139(2):383–389. doi: 10.1016/0003-2697(84)90022-8. [DOI] [PubMed] [Google Scholar]
  3. Bourson C., Favey S., Reverchon S., Robert-Baudouy J. Regulation of the expression of a pelA::uidA fusion in Erwinia chrysanthemi and demonstration of the synergistic action of plant extract with polygalacturonate on pectate lyase synthesis. J Gen Microbiol. 1993 Jan;139(1):1–9. doi: 10.1099/00221287-139-1-1. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Condemine G., Robert-Baudouy J. Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation. Mol Microbiol. 1991 Sep;5(9):2191–2202. doi: 10.1111/j.1365-2958.1991.tb02149.x. [DOI] [PubMed] [Google Scholar]
  7. Expert D., Toussaint A. Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol. 1985 Jul;163(1):221–227. doi: 10.1128/jb.163.1.221-227.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S. Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol. 1996;50:213–257. doi: 10.1146/annurev.micro.50.1.213. [DOI] [PubMed] [Google Scholar]
  9. Hugouvieux-Cotte-Pattat N., Dominguez H., Robert-Baudouy J. Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937. J Bacteriol. 1992 Dec;174(23):7807–7818. doi: 10.1128/jb.174.23.7807-7818.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hugouvieux-Cotte-Pattat N., Reverchon S., Robert-Baudouy J. Expanded linkage map of Erwinia chrysanthemi strain 3937. Mol Microbiol. 1989 May;3(5):573–581. doi: 10.1111/j.1365-2958.1989.tb00204.x. [DOI] [PubMed] [Google Scholar]
  11. Keen N. T., Dahlbeck D., Staskawicz B., Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol. 1984 Sep;159(3):825–831. doi: 10.1128/jb.159.3.825-831.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laurent F., Kotoujansky A., Labesse G., Bertheau Y. Characterization and overexpression of the pem gene encoding pectin methylesterase of Erwinia chrysanthemi strain 3937. Gene. 1993 Sep 6;131(1):17–25. doi: 10.1016/0378-1119(93)90664-o. [DOI] [PubMed] [Google Scholar]
  13. Lojkowska E., Masclaux C., Boccara M., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol Microbiol. 1995 Jun;16(6):1183–1195. doi: 10.1111/j.1365-2958.1995.tb02341.x. [DOI] [PubMed] [Google Scholar]
  14. Maes M., Messens E. Phenol as grinding material in RNA preparations. Nucleic Acids Res. 1992 Aug 25;20(16):4374–4374. doi: 10.1093/nar/20.16.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moran F., Nasuno S., Starr M. P. Oligogalacturonide trans-eliminase of Erwinia carotovora. Arch Biochem Biophys. 1968 Jun;125(3):734–741. doi: 10.1016/0003-9861(68)90508-0. [DOI] [PubMed] [Google Scholar]
  16. Nasser W., Condemine G., Plantier R., Anker D., Robert-Baudouy J. Inducing properties of analogs of 2-keto-3-deoxygluconate on the expression of pectinase genes of Erwinia chrysanthemi. FEMS Microbiol Lett. 1991 Jun 1;65(1):73–78. doi: 10.1016/0378-1097(91)90474-o. [DOI] [PubMed] [Google Scholar]
  17. Nasser W., Reverchon S., Condemine G., Robert-Baudouy J. Specific interactions of Erwinia chrysanthemi KdgR repressor with different operators of genes involved in pectinolysis. J Mol Biol. 1994 Feb 18;236(2):427–440. doi: 10.1006/jmbi.1994.1155. [DOI] [PubMed] [Google Scholar]
  18. Pissavin C., Robert-Baudouy J., Hugouvieux-Cotte-Pattat N. Regulation of pelZ, a gene of the pelB-pelC cluster encoding a new pectate lyase of Erwinia chrysanthemi 3937. J Bacteriol. 1996 Dec;178(24):7187–7196. doi: 10.1128/jb.178.24.7187-7196.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Praillet T., Nasser W., Robert-Baudouy J., Reverchon S. Purification and functional characterization of PecS, a regulator of virulence-factor synthesis in Erwinia chrysanthemi. Mol Microbiol. 1996 Apr;20(2):391–402. doi: 10.1111/j.1365-2958.1996.tb02626.x. [DOI] [PubMed] [Google Scholar]
  20. Reverchon S., Expert D., Robert-Baudouy J., Nasser W. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J Bacteriol. 1997 Jun;179(11):3500–3508. doi: 10.1128/jb.179.11.3500-3508.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reverchon S., Huang Y., Bourson C., Robert-Baudouy J. Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product. Gene. 1989 Dec 21;85(1):125–134. doi: 10.1016/0378-1119(89)90472-1. [DOI] [PubMed] [Google Scholar]
  22. Reverchon S., Nasser W., Robert-Baudouy J. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol. 1994 Mar;11(6):1127–1139. doi: 10.1111/j.1365-2958.1994.tb00389.x. [DOI] [PubMed] [Google Scholar]
  23. Reverchon S., Robert-Baudouy J. Molecular cloning of an Erwinia chrysanthemi oligogalacturonate lyase gene involved in pectin degradation. Gene. 1987;55(1):125–133. doi: 10.1016/0378-1119(87)90255-1. [DOI] [PubMed] [Google Scholar]
  24. Reverchon S., Robert-Baudouy J. Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi. J Bacteriol. 1987 Jun;169(6):2417–2423. doi: 10.1128/jb.169.6.2417-2423.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roeder D. L., Collmer A. Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol. 1985 Oct;164(1):51–56. doi: 10.1128/jb.164.1.51-56.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russel M., Model P. Replacement of the fip gene of Escherichia coli by an inactive gene cloned on a plasmid. J Bacteriol. 1984 Sep;159(3):1034–1039. doi: 10.1128/jb.159.3.1034-1039.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salmond G. P., Reeves P. J. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7–12. doi: 10.1016/0968-0004(93)90080-7. [DOI] [PubMed] [Google Scholar]
  28. Shevchik V. E., Condemine G., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. Characterization of pectin methylesterase B, an outer membrane lipoprotein of Erwinia chrysanthemi 3937. Mol Microbiol. 1996 Feb;19(3):455–466. doi: 10.1046/j.1365-2958.1996.389922.x. [DOI] [PubMed] [Google Scholar]
  29. Stauffer L. T., Stauffer G. V. Characterization of the gcv control region from Escherichia coli. J Bacteriol. 1994 Oct;176(20):6159–6164. doi: 10.1128/jb.176.20.6159-6164.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Surgey N., Robert-Baudouy J., Condemine G. The Erwinia chrysanthemi pecT gene regulates pectinase gene expression. J Bacteriol. 1996 Mar;178(6):1593–1599. doi: 10.1128/jb.178.6.1593-1599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Gijsegem F., Toussaint A. Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid. 1982 Jan;7(1):30–44. doi: 10.1016/0147-619x(82)90024-5. [DOI] [PubMed] [Google Scholar]
  33. Wilson R. L., Urbanowski M. L., Stauffer G. V. DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol. 1995 Sep;177(17):4940–4946. doi: 10.1128/jb.177.17.4940-4946.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES