Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(15):4953–4958. doi: 10.1128/jb.179.15.4953-4958.1997

Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 19B.

J K Morona 1, R Morona 1, J C Paton 1
PMCID: PMC179348  PMID: 9244289

Abstract

We have previously reported the nucleotide sequence of the Streptococcus pneumoniae type 19F capsular polysaccharide synthesis locus (cps19f), which consists of 15 open reading frames (ORFs) designated cps19fA to -O. Hybridization analysis indicated that close homologs for cps19fA to -H and cps19fK to -O were found in type 19B, but there were no homologs for cps19fI and -J. In this study we used long-range PCR to amplify and clone a 10.5-kb section of the S. pneumoniae type 19B capsule locus (cps19b) between cps19bH and cps19bK. This region of the cps19b locus is 4 kb larger than that in the cps19f locus and replaces cps19fI and cps19fJ with five new ORFs, designated cps19bP, -I, -Q, -R, and -J. We have proposed functions for four of the protein products, including functional homologs of Cps19fI and Cps19fJ. Transformation of a S. pneumoniae mutant containing an interrupted type 19F capsule locus with the 10.5-kb cps19b PCR product converted the recipient strain to type 19B. Southern hybridization analysis indicated that cps19bP, -I, -Q, -R, and -J are unique to type 19B and the closely related type 19C.

Full Text

The Full Text of this article is available as a PDF (192.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUSTRIAN R., BERNHEIMER H. P., SMITH E. E., MILLS G. T. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J Exp Med. 1959 Oct 1;110:585–602. doi: 10.1084/jem.110.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Austrian R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis. 1981 Mar-Apr;3 (Suppl):S1–17. doi: 10.1093/clinids/3.supplement_1.s1. [DOI] [PubMed] [Google Scholar]
  4. Berry A. M., Yother J., Briles D. E., Hansman D., Paton J. C. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun. 1989 Jul;57(7):2037–2042. doi: 10.1128/iai.57.7.2037-2042.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Douglas R. M., Paton J. C., Duncan S. J., Hansman D. J. Antibody response to pneumococcal vaccination in children younger than five years of age. J Infect Dis. 1983 Jul;148(1):131–137. doi: 10.1093/infdis/148.1.131. [DOI] [PubMed] [Google Scholar]
  6. Guidolin A., Morona J. K., Morona R., Hansman D., Paton J. C. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect Immun. 1994 Dec;62(12):5384–5396. doi: 10.1128/iai.62.12.5384-5396.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  8. Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol. 1995 Oct;33(10):2759–2762. doi: 10.1128/jcm.33.10.2759-2762.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  10. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  11. Keenleyside W. J., Whitfield C. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem. 1996 Nov 8;271(45):28581–28592. doi: 10.1074/jbc.271.45.28581. [DOI] [PubMed] [Google Scholar]
  12. Klena J. D., Schnaitman C. A. Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol. 1993 Jul;9(2):393–402. doi: 10.1111/j.1365-2958.1993.tb01700.x. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Lee C. J., Fraser B. A. The structures of the cross-reactive types 19 (19F) and 57 (19A) pneumococcal capsular polysaccharides. J Biol Chem. 1980 Jul 25;255(14):6847–6853. [PubMed] [Google Scholar]
  15. Lin W. S., Cunneen T., Lee C. Y. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J Bacteriol. 1994 Nov;176(22):7005–7016. doi: 10.1128/jb.176.22.7005-7016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu D., Cole R. A., Reeves P. R. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol. 1996 Apr;178(7):2102–2107. doi: 10.1128/jb.178.7.2102-2107.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macpherson D. F., Manning P. A., Morona R. Characterization of the dTDP-rhamnose biosynthetic genes encoded in the rfb locus of Shigella flexneri. Mol Microbiol. 1994 Jan;11(2):281–292. doi: 10.1111/j.1365-2958.1994.tb00308.x. [DOI] [PubMed] [Google Scholar]
  18. Macpherson D. F., Manning P. A., Morona R. Genetic analysis of the rfbX gene of Shigella flexneri. Gene. 1995 Mar 21;155(1):9–17. doi: 10.1016/0378-1119(94)00918-i. [DOI] [PubMed] [Google Scholar]
  19. Mitchison M., Bulach D. M., Vinh T., Rajakumar K., Faine S., Adler B. Identification and characterization of the dTDP-rhamnose biosynthesis and transfer genes of the lipopolysaccharide-related rfb locus in Leptospira interrogans serovar Copenhageni. J Bacteriol. 1997 Feb;179(4):1262–1267. doi: 10.1128/jb.179.4.1262-1267.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morona J. K., Morona R., Paton J. C. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol. 1997 Feb;23(4):751–763. doi: 10.1046/j.1365-2958.1997.2551624.x. [DOI] [PubMed] [Google Scholar]
  21. Morona R., Macpherson D. F., Van Den Bosch L., Carlin N. I., Manning P. A. Lipopolysaccharide with an altered O-antigen produced in Escherichia coli K-12 harbouring mutated, cloned Shigella flexneri rfb genes. Mol Microbiol. 1995 Oct;18(2):209–223. doi: 10.1111/j.1365-2958.1995.mmi_18020209.x. [DOI] [PubMed] [Google Scholar]
  22. Paton J. C., Berry A. M., Lock R. A., Hansman D., Manning P. A. Cloning and expression in Escherichia coli of the Streptococcus pneumoniae gene encoding pneumolysin. Infect Immun. 1986 Oct;54(1):50–55. doi: 10.1128/iai.54.1.50-55.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Skurnik M., Venho R., Toivanen P., al-Hendy A. A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol. 1995 Aug;17(3):575–594. doi: 10.1111/j.1365-2958.1995.mmi_17030575.x. [DOI] [PubMed] [Google Scholar]
  24. Stevenson G., Neal B., Liu D., Hobbs M., Packer N. H., Batley M., Redmond J. W., Lindquist L., Reeves P. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol. 1994 Jul;176(13):4144–4156. doi: 10.1128/jb.176.13.4144-4156.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Eldere J., Brophy L., Loynds B., Celis P., Hancock I., Carman S., Kroll J. S., Moxon E. R. Region II of the Haemophilus influenzae type be capsulation locus is involved in serotype-specific polysaccharide synthesis. Mol Microbiol. 1995 Jan;15(1):107–118. doi: 10.1111/j.1365-2958.1995.tb02225.x. [DOI] [PubMed] [Google Scholar]
  26. Zhang L., al-Hendy A., Toivanen P., Skurnik M. Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-L-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol. 1993 Jul;9(2):309–321. doi: 10.1111/j.1365-2958.1993.tb01692.x. [DOI] [PubMed] [Google Scholar]
  27. van Dam J. E., Fleer A., Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Van Leeuwenhoek. 1990 Jun;58(1):1–47. doi: 10.1007/BF02388078. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES