Abstract
A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR motif present in periplasmic proteins with complex redox centers. The mature soxC gene product exhibited high amino acid sequence similarity to the eukaryotic molybdoenzyme sulfite oxidase and to nitrate reductase. We constructed a mutant, GBsoxC delta, carrying an in-frame deletion in soxC which covered a region possibly coding for the molybdenum cofactor binding domain. GBsoxC delta was unable to grow lithoautotrophically with thiosulfate but grew well with nitrate as a nitrogen source or as an electron acceptor. Whole cells and cell extracts of mutant GBsoxC delta contained 10% of the thiosulfate-oxidizing activity of the wild type. Only a marginal rate of sulfite-dependent cytochrome c reduction was observed from cell extracts of mutant GBsoxC delta. These results demonstrated that sulfite dehydrogenase was essential for growth with thiosulfate of P. dentrificans GB17. soxD coded for a periplasmic diheme c-type cytochrome of 384 amino acids (Mr of 39,983) containing a putative signal peptide with an Mr of 2,363. soxE coded for a periplasmic monoheme c-type cytochrome of 236 amino acids (Mr of 25,926) containing a putative signal peptide with an Mr of 1,833. SoxD and SoxE were highly identical to c-type cytochromes of P. denitrificans and other organisms. soxF revealed an incomplete open reading frame coding for a peptide of 247 amino acids with a putative signal peptide (Mr of 2,629). The deduced amino acid sequence of soxF was 47% identical and 70% similar to the sequence of the flavoprotein of flavocytochrome c of Chromatium vinosum, suggesting the involvement of the flavoprotein in thiosulfate oxidation of P. denitrificans GB17.
Full Text
The Full Text of this article is available as a PDF (504.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambler R. P., Meyer T. E., Kamen M. D. Primary structure determination of two cytochromes c2: close similarity to functionally unrelated mitochondrial cytochrome C. Proc Natl Acad Sci U S A. 1976 Feb;73(2):472–475. doi: 10.1073/pnas.73.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambler R. P., Meyer T. E., Trudinger P. A., Kamen M. D. The amino acid sequence of the cytochrome c-554(547) from the chemolithotrophic bacterium Thiobacillus neapolitanus. Biochem J. 1985 May 1;227(3):1009–1013. doi: 10.1042/bj2271009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber M. J., Neame P. J. A conserved cysteine in molybdenum oxotransferases. J Biol Chem. 1990 Dec 5;265(34):20912–20915. [PubMed] [Google Scholar]
- Bokranz M., Gutmann M., Körtner C., Kojro E., Fahrenholz F., Lauterbach F., Kröger A. Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol. 1991;156(2):119–128. doi: 10.1007/BF00290984. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chandra T. S., Friedrich C. G. Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol. 1986 May;166(2):446–452. doi: 10.1128/jb.166.2.446-452.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z. W., Koh M., Van Driessche G., Van Beeumen J. J., Bartsch R. G., Meyer T. E., Cusanovich M. A., Mathews F. S. The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science. 1994 Oct 21;266(5184):430–432. doi: 10.1126/science.7939681. [DOI] [PubMed] [Google Scholar]
- Crawford N. M., Smith M., Bellissimo D., Davis R. W. Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5006–5010. doi: 10.1073/pnas.85.14.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel-Vedele F., Dorbe M. F., Caboche M., Rouzé P. Cloning and analysis of the tomato nitrate reductase-encoding gene: protein domain structure and amino acid homologies in higher plants. Gene. 1989 Dec 28;85(2):371–380. doi: 10.1016/0378-1119(89)90430-7. [DOI] [PubMed] [Google Scholar]
- Dernedde J., Eitinger T., Patenge N., Friedrich B. hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem. 1996 Jan 15;235(1-2):351–358. doi: 10.1111/j.1432-1033.1996.00351.x. [DOI] [PubMed] [Google Scholar]
- Dolata M. M., Van Beeumen J. J., Ambler R. P., Meyer T. E., Cusanovich M. A. Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem. 1993 Jul 5;268(19):14426–14431. [PubMed] [Google Scholar]
- Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans. Arch Microbiol. 1996 May;165(5):289–296. doi: 10.1007/s002030050329. [DOI] [PubMed] [Google Scholar]
- Friedrich B., Schwartz E. Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol. 1993;47:351–383. doi: 10.1146/annurev.mi.47.100193.002031. [DOI] [PubMed] [Google Scholar]
- Friedrich C. G. Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol. 1998;39:235–289. doi: 10.1016/s0065-2911(08)60018-1. [DOI] [PubMed] [Google Scholar]
- Fukumori Y., Yamanaka T. Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure. J Biochem. 1979 Jun;85(6):1405–1414. doi: 10.1093/oxfordjournals.jbchem.a132467. [DOI] [PubMed] [Google Scholar]
- Garrett R. M., Bellissimo D. B., Rajagopalan K. V. Molecular cloning of human liver sulfite oxidase. Biochim Biophys Acta. 1995 Jun 9;1262(2-3):147–149. doi: 10.1016/0167-4781(95)00068-r. [DOI] [PubMed] [Google Scholar]
- Garrett R. M., Rajagopalan K. V. Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. J Biol Chem. 1994 Jan 7;269(1):272–276. [PubMed] [Google Scholar]
- Grisshammer R., Wiessner C., Michel H. Sequence analysis and transcriptional organization of the Rhodopseudomonas viridis cytochrome c2 gene. J Bacteriol. 1990 Sep;172(9):5071–5078. doi: 10.1128/jb.172.9.5071-5078.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLUYVER A. J., VERHOEVEN W. Studies on-true dissimilatory nitrate reduction. IV. On adaptation in Micrococcus denitrificans. Antonie Van Leeuwenhoek. 1954;20(4):337–358. doi: 10.1007/BF02543738. [DOI] [PubMed] [Google Scholar]
- Katayama Y., Hiraishi A., Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology. 1995 Jun;141(Pt 6):1469–1477. doi: 10.1099/13500872-141-6-1469. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
- Meyer T. E., Bartsch R. G., Cusanovich M. A. Adduct formation between sulfite and the flavin of phototrophic bacterial flavocytochromes c. Kinetics of sequential bleach, recolor, and rebleach of flavin as a function of pH. Biochemistry. 1991 Sep 10;30(36):8840–8845. doi: 10.1021/bi00100a016. [DOI] [PubMed] [Google Scholar]
- Mittenhuber G., Sonomoto K., Egert M., Friedrich C. G. Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha. J Bacteriol. 1991 Nov;173(22):7340–7344. doi: 10.1128/jb.173.22.7340-7344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki J., Juricek M., Angelis K., Schnorr K. M., Kleinhofs A., Warner R. L. Characterization and sequence of a novel nitrate reductase from barley. Mol Gen Genet. 1991 Sep;228(3):329–334. doi: 10.1007/BF00260624. [DOI] [PubMed] [Google Scholar]
- Mohana Rao J. K., Argos P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta. 1986 Jan 30;869(2):197–214. doi: 10.1016/0167-4838(86)90295-5. [DOI] [PubMed] [Google Scholar]
- Morgan W. T., Hensley C. P., Jr, Riehm J. P. Proteins of the thermophilic fungus Humicola lanuginosa. I. Isolation and amino acid sequence of a cytochrome C. J Biol Chem. 1972 Oct 25;247(20):6555–6565. [PubMed] [Google Scholar]
- Nunn D. N., Lidstrom M. E. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1. J Bacteriol. 1986 May;166(2):591–597. doi: 10.1128/jb.166.2.591-597.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pieterse C. M., van't Klooster J., van den Berg-Velthuis G. C., Govers F. NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans. Curr Genet. 1995 Mar;27(4):359–366. doi: 10.1007/BF00352105. [DOI] [PubMed] [Google Scholar]
- Russell P. R., Hall B. D. Structure of the Schizosaccharomyces pombe cytochrome c gene. Mol Cell Biol. 1982 Feb;2(2):106–116. doi: 10.1128/mcb.2.2.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samyn B., Berks B. C., Page M. D., Ferguson S. J., van Beeumen J. J. Characterisation and amino acid sequence of cytochrome c-550 from Thiosphaera pantotropha. Eur J Biochem. 1994 Jan 15;219(1-2):585–594. doi: 10.1111/j.1432-1033.1994.tb19974.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider A., Friedrich C. Sulfide dehydrogenase is identical with the SoxB protein of the thiosulfate-oxidizing enzyme system of Paracoccus denitrificans GB17. FEBS Lett. 1994 Aug 15;350(1):61–65. doi: 10.1016/0014-5793(94)00732-2. [DOI] [PubMed] [Google Scholar]
- Steinrücke P., Ludwig B. Genetics of Paracoccus denitrificans. FEMS Microbiol Rev. 1993 Jan;10(1-2):83–117. doi: 10.1016/0378-1097(93)90505-v. [DOI] [PubMed] [Google Scholar]
- Toghrol F., Southerland W. M. Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum. J Biol Chem. 1983 Jun 10;258(11):6762–6766. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turba A., Jetzek M., Ludwig B. Purification of Paracoccus denitrificans cytochrome c552 and sequence analysis of the gene. Eur J Biochem. 1995 Jul 1;231(1):259–265. [PubMed] [Google Scholar]
- Visser JM, de Jong GAH, Robertson LA, Kuenen JG. A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol. 1997 Apr 15;167(5):295–301. doi: 10.1007/s002030050447. [DOI] [PubMed] [Google Scholar]
- Wodara C., Kostka S., Egert M., Kelly D. P., Friedrich C. G. Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J Bacteriol. 1994 Oct;176(20):6188–6191. doi: 10.1128/jb.176.20.6188-6191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamanaka T., Nagano T., Shoji K., Fukumori Y. Cytochromes c of Nitrobacter winogradskyi and Thiobacillus novellus: structure, function and evolution. Biochim Biophys Acta. 1991 May 23;1058(1):48–51. doi: 10.1016/s0005-2728(05)80267-1. [DOI] [PubMed] [Google Scholar]
- Zumft W. G., Dreusch A., Löchelt S., Cuypers H., Friedrich B., Schneider B. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem. 1992 Aug 15;208(1):31–40. doi: 10.1111/j.1432-1033.1992.tb17156.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]