Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5046–5055. doi: 10.1128/jb.179.16.5046-5055.1997

Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis.

N E Cáceres 1, N B Harris 1, J F Wellehan 1, Z Feng 1, V Kapur 1, R G Barletta 1
PMCID: PMC179361  PMID: 9260945

Abstract

D-Cycloserine is an effective second-line drug against Mycobacterium avium and Mycobacterium tuberculosis. To analyze the genetic determinants of D-cycloserine resistance in mycobacteria, a library of a resistant Mycobacterium smegmatis mutant was constructed. A resistant clone harboring a recombinant plasmid with a 3.1-kb insert that contained the glutamate decarboxylase (gadA) and D-alanine racemase (alrA) genes was identified. Subcloning experiments demonstrated that alrA was necessary and sufficient to confer a D-cycloserine resistance phenotype. The D-alanine racemase activities of wild-type and recombinant M. smegmatis strains were inhibited by D-cycloserine in a concentration-dependent manner. The D-cycloserine resistance phenotype in the recombinant clone was due to the overexpression of the wild-type alrA gene in a multicopy vector. Analysis of a spontaneous resistant mutant also demonstrated overproduction of wild-type AlrA enzyme. Nucleotide sequence analysis of the overproducing mutant revealed a single transversion (G-->T) at the alrA promoter, which resulted in elevated beta-galactosidase reporter gene expression. Furthermore, transformants of Mycobacterium intracellulare and Mycobacterium bovis BCG carrying the M. smegmatis wild-type alrA gene in a multicopy vector were resistant to D-cycloserine, suggesting that AlrA overproduction is a potential mechanism of D-cycloserine resistance in clinical isolates of M. tuberculosis and other pathogenic mycobacteria. In conclusion, these results show that one of the mechanisms of D-cycloserine resistance in M. smegmatis involves the overexpression of the alrA gene due to a promoter-up mutation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badet B., Inagaki K., Soda K., Walsh C. T. Time-dependent inhibition of Bacillus stearothermophilus alanine racemase by (1-aminoethyl)phosphonate isomers by isomerization to noncovalent slowly dissociating enzyme-(1-aminoethyl)phosphonate complexes. Biochemistry. 1986 Jun 3;25(11):3275–3282. doi: 10.1021/bi00359a029. [DOI] [PubMed] [Google Scholar]
  2. Bashyam M. D., Kaushal D., Dasgupta S. K., Tyagi A. K. A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J Bacteriol. 1996 Aug;178(16):4847–4853. doi: 10.1128/jb.178.16.4847-4853.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bashyam M. D., Tyagi A. An efficient and high-yielding method for isolation of RNA from mycobacteria. Biotechniques. 1994 Nov;17(5):834–836. [PubMed] [Google Scholar]
  4. Blattner F. R., Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408–5417. doi: 10.1093/nar/21.23.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connell N. D., Medina-Acosta E., McMaster W. R., Bloom B. R., Russell D. G. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guérin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11473–11477. doi: 10.1073/pnas.90.24.11473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. David H. L., Goldman D. S., Takayama K. Inhibition of the Synthesis of Wax D Peptidoglycolipid of Mycobacterium tuberculosis by d-Cycloserine. Infect Immun. 1970 Jan;1(1):74–77. doi: 10.1128/iai.1.1.74-77.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David H. L. Resistance to D-cycloserine in the tubercle bacilli: mutation rate and transport of alanine in parental cells and drug-resistant mutants. Appl Microbiol. 1971 May;21(5):888–892. doi: 10.1128/am.21.5.888-892.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. David H. L., Takayama K., Goldman D. S. Susceptibility of mycobacterial D-alanyl-D-alanine synthetase to D-cycloserine. Am Rev Respir Dis. 1969 Oct;100(4):579–581. doi: 10.1164/arrd.1969.100.4.579. [DOI] [PubMed] [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  11. Foley-Thomas E. M., Whipple D. L., Bermudez L. E., Barletta R. G. Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology. 1995 May;141(Pt 5):1173–1181. doi: 10.1099/13500872-141-5-1173. [DOI] [PubMed] [Google Scholar]
  12. Fsihi H., Cole S. T. The Mycobacterium leprae genome: systematic sequence analysis identifies key catabolic enzymes, ATP-dependent transport systems and a novel polA locus associated with genomic variability. Mol Microbiol. 1995 Jun;16(5):909–919. doi: 10.1111/j.1365-2958.1995.tb02317.x. [DOI] [PubMed] [Google Scholar]
  13. Galakatos N. G., Daub E., Botstein D., Walsh C. T. Biosynthetic alr alanine racemase from Salmonella typhimurium: DNA and protein sequence determination. Biochemistry. 1986 Jun 3;25(11):3255–3260. doi: 10.1021/bi00359a026. [DOI] [PubMed] [Google Scholar]
  14. Galakatos N. G., Walsh C. T. Specific proteolysis of native alanine racemases from Salmonella typhimurium: identification of the cleavage site and characterization of the clipped two-domain proteins. Biochemistry. 1987 Dec 15;26(25):8475–8480. doi: 10.1021/bi00399a066. [DOI] [PubMed] [Google Scholar]
  15. Good R. C. Opportunistic pathogens in the genus Mycobacterium. Annu Rev Microbiol. 1985;39:347–369. doi: 10.1146/annurev.mi.39.100185.002023. [DOI] [PubMed] [Google Scholar]
  16. Heifets L. B., Iseman M. D. Individualized therapy versus standard regimens in the treatment of Mycobacterium avium infections. Am Rev Respir Dis. 1991 Jul;144(1):1–2. doi: 10.1164/ajrccm/144.1.1. [DOI] [PubMed] [Google Scholar]
  17. Helmy B. Side effects of cycloserine. Scand J Respir Dis Suppl. 1970;71:220–225. [PubMed] [Google Scholar]
  18. Inderlied C. B., Kemper C. A., Bermudez L. E. The Mycobacterium avium complex. Clin Microbiol Rev. 1993 Jul;6(3):266–310. doi: 10.1128/cmr.6.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobs W. R., Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Genetic systems for mycobacteria. Methods Enzymol. 1991;204:537–555. doi: 10.1016/0076-6879(91)04027-l. [DOI] [PubMed] [Google Scholar]
  20. Lambert M. P., Neuhaus F. C. Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol. 1972 Jun;110(3):978–987. doi: 10.1128/jb.110.3.978-987.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lobocka M., Hennig J., Wild J., Kłopotowski T. Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol. 1994 Mar;176(5):1500–1510. doi: 10.1128/jb.176.5.1500-1510.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maras B., Sweeney G., Barra D., Bossa F., John R. A. The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzymes. Eur J Biochem. 1992 Feb 15;204(1):93–98. doi: 10.1111/j.1432-1033.1992.tb16609.x. [DOI] [PubMed] [Google Scholar]
  23. NEUHAUS F. C., LYNCH J. L. THE ENZYMATIC SYNTHESIS OF D-ALANYL-D-ALANINE. 3. ON THE INHIBITION OF D-ALANYL-D-ALANINE SYNTHETASE BY THE ANTIBIOTIC D-CYCLOSERINE. Biochemistry. 1964 Apr;3:471–480. doi: 10.1021/bi00892a001. [DOI] [PubMed] [Google Scholar]
  24. NEUHAUS F. C. The enzymatic synthesis of D-alanyl-D-alanine. I. Purification and properties of D-alanyl-D-alanine synthetase. J Biol Chem. 1962 Mar;237:778–786. [PubMed] [Google Scholar]
  25. Neuhaus F. C., Hammes W. P. Inhibition of cell wall biosynthesis by analogues and alanine. Pharmacol Ther. 1981;14(3):265–319. doi: 10.1016/0163-7258(81)90030-9. [DOI] [PubMed] [Google Scholar]
  26. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. K., Bloom B. R., Jacobs W. R., Jr Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun. 1994 Apr;62(4):1313–1319. doi: 10.1128/iai.62.4.1313-1319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Philipp W. J., Poulet S., Eiglmeier K., Pascopella L., Balasubramanian V., Heym B., Bergh S., Bloom B. R., Jacobs W. R., Jr, Cole S. T. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3132–3137. doi: 10.1073/pnas.93.7.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rastogi N., Goh K. S., David H. L. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother. 1990 May;34(5):759–764. doi: 10.1128/aac.34.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reitz R. H., Slade H. D., Neuhaus F. C. The biochemical mechanisms of resistance by streptococci to the antibiotics D-cycloserine and O-carbamyl-D-serine. Biochemistry. 1967 Aug;6(8):2561–2570. doi: 10.1021/bi00860a038. [DOI] [PubMed] [Google Scholar]
  30. Roise D., Soda K., Yagi T., Walsh C. T. Inactivation of the Pseudomonas striata broad specificity amino acid racemase by D and L isomers of beta-substituted alanines: kinetics, stoichiometry, active site peptide, and mechanistic studies. Biochemistry. 1984 Oct 23;23(22):5195–5201. doi: 10.1021/bi00317a017. [DOI] [PubMed] [Google Scholar]
  31. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  32. Sofia H. J., Burland V., Daniels D. L., Plunkett G., 3rd, Blattner F. R. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576–2586. doi: 10.1093/nar/22.13.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. TSUKAMURA M., NODA Y., HAYASHI M., YAMAMOTO M. A genetic study on the cycloserine-resistance of Mycobacterium tuberculosis var. hominis. Jpn J Microbiol. 1959 Jan;3:1–8. doi: 10.1111/j.1348-0421.1959.tb00095.x. [DOI] [PubMed] [Google Scholar]
  34. Tanizawa K., Ohshima A., Scheidegger A., Inagaki K., Tanaka H., Soda K. Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction. Biochemistry. 1988 Feb 23;27(4):1311–1316. doi: 10.1021/bi00404a033. [DOI] [PubMed] [Google Scholar]
  35. Thompson L. T., Moskal J. R., Disterhoft J. F. Hippocampus-dependent learning facilitated by a monoclonal antibody or D-cycloserine. Nature. 1992 Oct 15;359(6396):638–641. doi: 10.1038/359638a0. [DOI] [PubMed] [Google Scholar]
  36. Trias J., Benz R. Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol. 1994 Oct;14(2):283–290. doi: 10.1111/j.1365-2958.1994.tb01289.x. [DOI] [PubMed] [Google Scholar]
  37. Wang E., Walsh C. Suicide substrates for the alanine racemase of Escherichia coli B. Biochemistry. 1978 Apr 4;17(7):1313–1321. doi: 10.1021/bi00600a028. [DOI] [PubMed] [Google Scholar]
  38. Wargel R. J., Shadur C. A., Neuhaus F. C. Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol. 1970 Sep;103(3):778–788. doi: 10.1128/jb.103.3.778-788.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wasserman S. A., Daub E., Grisafi P., Botstein D., Walsh C. T. Catabolic alanine racemase from Salmonella typhimurium: DNA sequence, enzyme purification, and characterization. Biochemistry. 1984 Oct 23;23(22):5182–5187. doi: 10.1021/bi00317a015. [DOI] [PubMed] [Google Scholar]
  40. Wasserman S. A., Walsh C. T., Botstein D. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol. 1983 Mar;153(3):1439–1450. doi: 10.1128/jb.153.3.1439-1450.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Whipple D. L., Le Febvre R. B., Andrews R. E., Jr, Thiermann A. B. Isolation and analysis of restriction endonuclease digestive patterns of chromosomal DNA from Mycobacterium paratuberculosis and other Mycobacterium species. J Clin Microbiol. 1987 Aug;25(8):1511–1515. doi: 10.1128/jcm.25.8.1511-1515.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wijsman H. J. The characterization of an alanine racemase mutant of Escherichia coli. Genet Res. 1972 Dec;20(3):269–277. doi: 10.1017/s001667230001380x. [DOI] [PubMed] [Google Scholar]
  43. Wood J. D., Peesker S. J., Gorecki D. K., Tsui D. Effect of L-cycloserine on brain GABA metabolism. Can J Physiol Pharmacol. 1978 Feb;56(1):62–68. doi: 10.1139/y78-009. [DOI] [PubMed] [Google Scholar]
  44. Yew W. W., Wong C. F., Wong P. C., Lee J., Chau C. H. Adverse neurological reactions in patients with multidrug-resistant pulmonary tuberculosis after coadministration of cycloserine and ofloxacin. Clin Infect Dis. 1993 Aug;17(2):288–289. doi: 10.1093/clinids/17.2.288. [DOI] [PubMed] [Google Scholar]
  45. ZYGMUNT W. A. ANTAGONISM OF D-CYCLOSERINE INHIBITION OF MYCOBACTERIAL GROWTH BY D-ALANINE. J Bacteriol. 1963 Jun;85:1217–1220. doi: 10.1128/jb.85.6.1217-1220.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES