Abstract
PcaK is a transporter and chemoreceptor protein from Pseudomonas putida that is encoded as part of the beta-ketoadipate pathway regulon for aromatic acid degradation. When expressed in Escherichia coli, PcaK was localized to the membrane and catalyzed the accumulation of two aromatic substrates, 4-hydroxybenzoate and protocatechuate, against a concentration gradient. Benzoate inhibited 4-hydroxybenzoate uptake but was not a substrate for PcaK-catalyzed transport. A P. putida pcaK mutant was defective in its ability to accumulate micromolar amounts of 4-hydroxybenzoate and protocatechuate. The mutant was also impaired in growth on millimolar concentrations of these aromatic acids. In contrast, the pcaK mutant grew at wild-type rates on benzoate. The Vmax for uptake of 4-hydroxybenzoate was at least 25 nmol/min/mg of protein, and the Km was 6 microM. PcaK-mediated transport is energized by the proton motive force. These results show that although aromatic acids in the undissociated (uncharged) form can diffuse across bacterial membranes, high-specificity active transport systems probably also contribute to the ability of bacteria to grow on the micromolar concentrations of these compounds that are typically present in soil. A variety of aromatic molecules, including naturally occurring lignin derivatives and xenobiotics, are metabolized by bacteria and may be substrates for transport proteins. The characterization of PcaK provides a foundation for understanding active transport as a critical step in the metabolism of aromatic carbon sources.
Full Text
The Full Text of this article is available as a PDF (374.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allende J. L., Gibello A., Martin M., Garrido-Pertierra A. Transport of 4-hydroxyphenylacetic acid in Klebsiella pneumoniae. Arch Biochem Biophys. 1992 Feb 1;292(2):583–588. doi: 10.1016/0003-9861(92)90034-t. [DOI] [PubMed] [Google Scholar]
- Allende J. L., Suarez M., Gallego M., Garrido-Pertierra A. 4-Hydroxybenzoate uptake in Klebsiella pneumoniae is driven by electrical potential. Arch Biochem Biophys. 1993 Jan;300(1):142–147. doi: 10.1006/abbi.1993.1020. [DOI] [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Ferrández A., Garciá J. L., Díaz E. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol. 1997 Apr;179(8):2573–2581. doi: 10.1128/jb.179.8.2573-2581.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goswitz V. C., Brooker R. J. Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci. 1995 Mar;4(3):534–537. doi: 10.1002/pro.5560040319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groenewegen P. E., Driessen A. J., Konings W. N., de Bont J. A. Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J Bacteriol. 1990 Jan;172(1):419–423. doi: 10.1128/jb.172.1.419-423.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwood C. S., Nichols N. N., Kim M. K., Ditty J. L., Parales R. E. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol. 1994 Nov;176(21):6479–6488. doi: 10.1128/jb.176.21.6479-6488.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwood C. S., Parales R. E., Dispensa M. Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol. 1990 May;56(5):1501–1503. doi: 10.1128/aem.56.5.1501-1503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwood C. S., Parales R. E. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–590. doi: 10.1146/annurev.micro.50.1.553. [DOI] [PubMed] [Google Scholar]
- Harwood C. S., Rivelli M., Ornston L. N. Aromatic acids are chemoattractants for Pseudomonas putida. J Bacteriol. 1984 Nov;160(2):622–628. doi: 10.1128/jb.160.2.622-628.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson P. J. The homologous glucose transport proteins of prokaryotes and eukaryotes. Res Microbiol. 1990 Mar-Apr;141(3):316–328. doi: 10.1016/0923-2508(90)90005-b. [DOI] [PubMed] [Google Scholar]
- Jessen-Marshall A. E., Paul N. J., Brooker R. J. The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem. 1995 Jul 7;270(27):16251–16257. doi: 10.1074/jbc.270.27.16251. [DOI] [PubMed] [Google Scholar]
- Joshi A. K., Ahmed S., Ferro-Luzzi Ames G. Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells. J Biol Chem. 1989 Feb 5;264(4):2126–2133. [PubMed] [Google Scholar]
- Kaback H. R. Molecular biology of active transport: from membrane to molecule to mechanism. Harvey Lect. 1987;83:77–105. [PubMed] [Google Scholar]
- Kashket E. R. The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol. 1985;39:219–242. doi: 10.1146/annurev.mi.39.100185.001251. [DOI] [PubMed] [Google Scholar]
- Kowalchuk G. A., Hartnett G. B., Benson A., Houghton J. E., Ngai K. L., Ornston L. N. Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene. 1994 Aug 19;146(1):23–30. doi: 10.1016/0378-1119(94)90829-x. [DOI] [PubMed] [Google Scholar]
- Krämer R. Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol. 1994;162(1-2):1–13. doi: 10.1007/BF00264366. [DOI] [PubMed] [Google Scholar]
- Locher H. H., Poolman B., Cook A. M., Konings W. N. Uptake of 4-toluene sulfonate by Comamonas testosteroni T-2. J Bacteriol. 1993 Feb;175(4):1075–1080. doi: 10.1128/jb.175.4.1075-1080.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
- Miguez C. B., Greer C. W., Ingram J. M., Macleod R. A. Uptake of Benzoic Acid and Chloro-Substituted Benzoic Acids by Alcaligenes denitrificans BRI 3010 and BRI 6011. Appl Environ Microbiol. 1995 Dec;61(12):4152–4159. doi: 10.1128/aem.61.12.4152-4159.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols N. N., Harwood C. S. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J Bacteriol. 1995 Dec;177(24):7033–7040. doi: 10.1128/jb.177.24.7033-7040.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ornston L. N., Parke D. Properties of an inducible uptake system for beta-ketoadipate in Pseudomonas putida. J Bacteriol. 1976 Feb;125(2):475–488. doi: 10.1128/jb.125.2.475-488.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkinson J. S. Signal transduction schemes of bacteria. Cell. 1993 Jun 4;73(5):857–871. doi: 10.1016/0092-8674(93)90267-t. [DOI] [PubMed] [Google Scholar]
- Prieto M. A., Díaz E., García J. L. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol. 1996 Jan;178(1):111–120. doi: 10.1128/jb.178.1.111-120.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saint C. P., Romas P. 4-Methylphthalate catabolism in Burkholderia (Pseudomonas) cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology. 1996 Sep;142(Pt 9):2407–2418. doi: 10.1099/00221287-142-9-2407. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITEHEAD D. C. IDENTIFICATION OF P-HYDROXYBENZOIC, VANILLIC, P-COUMARIC AND FERULIC ACIDS IN SOILS. Nature. 1964 Apr 25;202:417–418. doi: 10.1038/202417a0. [DOI] [PubMed] [Google Scholar]