Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5062–5071. doi: 10.1128/jb.179.16.5062-5071.1997

Characterization of a transposon Tn916-generated mutant of Haemophilus ducreyi 35000 defective in lipooligosaccharide biosynthesis.

B W Gibson 1, A A Campagnari 1, W Melaugh 1, N J Phillips 1, M A Apicella 1, S Grass 1, J Wang 1, K L Palmer 1, R S Munson Jr 1
PMCID: PMC179363  PMID: 9260947

Abstract

To define the role of the surface lipooligosaccharide (LOS) of Haemophilus ducreyi in the pathogenesis of chancroid, Tn916 mutants of H. ducreyi 35000 defective in expression of the murine monoclonal antibody (MAb) 3F11 epitope on H. ducreyi LOS were identified by immunologic screening. One mutant, designated 1381, has an LOS which lacks the MAb 3F11 epitope and migrates with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene disrupted by the Tn916 element in strain 1381 was identified by cloning the sequences flanking the Tn916 element. The sequences were then used to probe a lambda DASHII genomic library. In strain 1381, Tn916 interrupts a gene which encodes an open reading frame (ORF) with an Mr of 40,246. This ORF has homology to the product of the rfaK gene of Escherichia coli. The major LOS glycoform produced by strain 1381 was analyzed by using a combination of mass spectrometry, linkage and composition analysis, and 1H nuclear magnetic resonance spectroscopy. The major LOS species was found to terminate in a single glucose attached to the heptose (L-glycero-D-manno-heptose, or Hep) trisaccharide core. In the wild-type strain 35000, glucose serves as the acceptor for the addition of the D-glycero-D-manno-heptose (or DDHep), which extends to form the mature branch of the H. ducreyi LOS. This mature oligosaccharide is in turn partially capped by the addition of sialic acid (NeuAc), i.e., NeuAc2 alpha-->3Gal beta1-->4GlcNAc beta1-->3Gal beta1-->4DDHep alpha1-->6Glc beta1 (W. Melaugh et al., Biochemistry 33:13070-13078, 1994). Since this LOS terminates prior to the addition of the branch DD-heptose, this gene is likely to encode the D-glycero-D-manno-heptosyltransferase. Strain 1381 exhibits a significant reduction in adherence to and invasion of primary human keratinocytes. This defect was complemented by the cloned heptosyltransferase gene, indicating that the terminal portion of the LOS oligosaccharide plays an important role in adherence to human keratinocytes.

Full Text

The Full Text of this article is available as a PDF (361.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albritton W. L. Biology of Haemophilus ducreyi. Microbiol Rev. 1989 Dec;53(4):377–389. doi: 10.1128/mr.53.4.377-389.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfa M. J. Cytopathic effect of Haemophilus ducreyi for human foreskin cell culture. J Med Microbiol. 1992 Jul;37(1):43–50. doi: 10.1099/00222615-37-1-43. [DOI] [PubMed] [Google Scholar]
  3. Alfa M. J., DeGagne P. Attachment of Haemophilus ducreyi to human foreskin fibroblasts involves LOS and fibronectin. Microb Pathog. 1997 Jan;22(1):39–46. doi: 10.1006/mpat.1996.0089. [DOI] [PubMed] [Google Scholar]
  4. Alfa M. J., DeGagne P., Totten P. A. Haemophilus ducreyi hemolysin acts as a contact cytotoxin and damages human foreskin fibroblasts in cell culture. Infect Immun. 1996 Jun;64(6):2349–2352. doi: 10.1128/iai.64.6.2349-2352.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Apicella M. A., Griffiss J. M., Schneider H. Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol. 1994;235:242–252. doi: 10.1016/0076-6879(94)35145-7. [DOI] [PubMed] [Google Scholar]
  6. Brentjens R. J., Spinola S. M., Campagnari A. A. Haemophilus ducreyi adheres to human keratinocytes. Microb Pathog. 1994 Mar;16(3):243–247. doi: 10.1006/mpat.1994.1025. [DOI] [PubMed] [Google Scholar]
  7. Campagnari A. A., Karalus R., Apicella M., Melaugh W., Lesse A. J., Gibson B. W. Use of pyocin to select a Haemophilus ducreyi variant defective in lipooligosaccharide biosynthesis. Infect Immun. 1994 Jun;62(6):2379–2386. doi: 10.1128/iai.62.6.2379-2386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campagnari A. A., Wild L. M., Griffiths G. E., Karalus R. J., Wirth M. A., Spinola S. M. Role of lipooligosaccharides in experimental dermal lesions caused by Haemophilus ducreyi. Infect Immun. 1991 Aug;59(8):2601–2608. doi: 10.1128/iai.59.8.2601-2608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark-Curtiss J. E., Jacobs W. R., Docherty M. A., Ritchie L. R., Curtiss R., 3rd Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J Bacteriol. 1985 Mar;161(3):1093–1102. doi: 10.1128/jb.161.3.1093-1102.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cope L. D., Lumbley S., Latimer J. L., Klesney-Tait J., Stevens M. K., Johnson L. S., Purven M., Munson R. S., Jr, Lagergard T., Radolf J. D. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4056–4061. doi: 10.1073/pnas.94.8.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson B. W., Melaugh W., Phillips N. J., Apicella M. A., Campagnari A. A., Griffiss J. M. Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol. 1993 May;175(9):2702–2712. doi: 10.1128/jb.175.9.2702-2712.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helander I. M., Kilpeläinen I., Vaara M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol. 1994 Feb;11(3):481–487. doi: 10.1111/j.1365-2958.1994.tb00329.x. [DOI] [PubMed] [Google Scholar]
  13. High N. J., Deadman M. E., Moxon E. R. The role of a repetitive DNA motif (5'-CAAT-3') in the variable expression of the Haemophilus influenzae lipopolysaccharide epitope alpha Gal(1-4)beta Gal. Mol Microbiol. 1993 Sep;9(6):1275–1282. doi: 10.1111/j.1365-2958.1993.tb01257.x. [DOI] [PubMed] [Google Scholar]
  14. Jessamine P. G., Ronald A. R. Chancroid and the role of genital ulcer disease in the spread of human retroviruses. Med Clin North Am. 1990 Nov;74(6):1417–1431. doi: 10.1016/s0025-7125(16)30488-6. [DOI] [PubMed] [Google Scholar]
  15. Kelly J., Masoud H., Perry M. B., Richards J. C., Thibault P. Separation and characterization of O-deacylated lipooligosaccharides and glycans derived from Moraxella catarrhalis using capillary electrophoresis-electrospray mass spectrometry and tandem mass spectrometry. Anal Biochem. 1996 Jan 1;233(1):15–30. doi: 10.1006/abio.1996.0002. [DOI] [PubMed] [Google Scholar]
  16. Klena J. D., Pradel E., Schnaitman C. A. Comparison of lipopolysaccharide biosynthesis genes rfaK, rfaL, rfaY, and rfaZ of Escherichia coli K-12 and Salmonella typhimurium. J Bacteriol. 1992 Jul;174(14):4746–4752. doi: 10.1128/jb.174.14.4746-4752.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreiss J. K., Coombs R., Plummer F., Holmes K. K., Nikora B., Cameron W., Ngugi E., Ndinya Achola J. O., Corey L. Isolation of human immunodeficiency virus from genital ulcers in Nairobi prostitutes. J Infect Dis. 1989 Sep;160(3):380–384. doi: 10.1093/infdis/160.3.380. [DOI] [PubMed] [Google Scholar]
  18. Kulshin V. A., Zähringer U., Lindner B., Frasch C. E., Tsai C. M., Dmitriev B. A., Rietschel E. T. Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J Bacteriol. 1992 Mar;174(6):1793–1800. doi: 10.1128/jb.174.6.1793-1800.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lagergård T., Purvén M., Frisk A. Evidence of Haemophilus ducreyi adherence to and cytotoxin destruction of human epithelial cells. Microb Pathog. 1993 Jun;14(6):417–431. doi: 10.1006/mpat.1993.1041. [DOI] [PubMed] [Google Scholar]
  20. Lagergård T. The role of Haemophilus ducreyi bacteria, cytotoxin, endotoxin and antibodies in animal models for study of chancroid. Microb Pathog. 1992 Sep;13(3):203–217. doi: 10.1016/0882-4010(92)90021-f. [DOI] [PubMed] [Google Scholar]
  21. Levery S. B., Hakomori S. Microscale methylation analysis of glycolipids using capillary gas chromatography-chemical ionization mass fragmentography with selected ion monitoring. Methods Enzymol. 1987;138:13–25. doi: 10.1016/0076-6879(87)38004-8. [DOI] [PubMed] [Google Scholar]
  22. Masoud H., Moxon E. R., Martin A., Krajcarski D., Richards J. C. Structure of the variable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae serotype b strain Eagan. Biochemistry. 1997 Feb 25;36(8):2091–2103. doi: 10.1021/bi961989y. [DOI] [PubMed] [Google Scholar]
  23. Masoud H., Perry M. B., Richards J. C. Characterization of the lipopolysaccharide of Moraxella catarrhalis. Structural analysis of the lipid A from M. catarrhalis serotype A lipopolysaccharide. Eur J Biochem. 1994 Feb 15;220(1):209–216. doi: 10.1111/j.1432-1033.1994.tb18616.x. [DOI] [PubMed] [Google Scholar]
  24. Melaugh W., Campagnari A. A., Gibson B. W. The lipooligosaccharides of Haemophilus ducreyi are highly sialylated. J Bacteriol. 1996 Jan;178(2):564–570. doi: 10.1128/jb.178.2.564-570.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Melaugh W., Phillips N. J., Campagnari A. A., Karalus R., Gibson B. W. Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease. J Biol Chem. 1992 Jul 5;267(19):13434–13439. [PubMed] [Google Scholar]
  26. Melaugh W., Phillips N. J., Campagnari A. A., Tullius M. V., Gibson B. W. Structure of the major oligosaccharide from the lipooligosaccharide of Haemophilus ducreyi strain 35000 and evidence for additional glycoforms. Biochemistry. 1994 Nov 8;33(44):13070–13078. doi: 10.1021/bi00248a016. [DOI] [PubMed] [Google Scholar]
  27. Morse S. A. Chancroid and Haemophilus ducreyi. Clin Microbiol Rev. 1989 Apr;2(2):137–157. doi: 10.1128/cmr.2.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palmer K. L., Goldman W. E., Munson R. S., Jr An isogenic haemolysin-deficient mutant of Haemophilus ducreyi lacks the ability to produce cytopathic effects on human foreskin fibroblasts. Mol Microbiol. 1996 Jul;21(1):13–19. doi: 10.1046/j.1365-2958.1996.00615.x. [DOI] [PubMed] [Google Scholar]
  29. Palmer K. L., Munson R. S., Jr Cloning and characterization of the genes encoding the hemolysin of Haemophilus ducreyi. Mol Microbiol. 1995 Dec;18(5):821–830. doi: 10.1111/j.1365-2958.1995.18050821.x. [DOI] [PubMed] [Google Scholar]
  30. Paradis S. E., Dubreuil D., Rioux S., Gottschalk M., Jacques M. High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun. 1994 Aug;62(8):3311–3319. doi: 10.1128/iai.62.8.3311-3319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae. Biochemistry. 1992 May 12;31(18):4515–4526. doi: 10.1021/bi00133a019. [DOI] [PubMed] [Google Scholar]
  32. Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. Structural studies of the lipooligosaccharides from Haemophilus influenzae type b strain A2. Biochemistry. 1993 Mar 2;32(8):2003–2012. doi: 10.1021/bi00059a017. [DOI] [PubMed] [Google Scholar]
  33. Phillips N. J., John C. M., Reinders L. G., Gibson B. W., Apicella M. A., Griffiss J. M. Structural models for the cell surface lipooligosaccharides of Neisseria gonorrhoeae and Haemophilus influenzae. Biomed Environ Mass Spectrom. 1990 Nov;19(11):731–745. doi: 10.1002/bms.1200191112. [DOI] [PubMed] [Google Scholar]
  34. Pier G. B., Grout M., Zaidi T. S., Olsen J. C., Johnson L. G., Yankaskas J. R., Goldberg J. B. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science. 1996 Jan 5;271(5245):64–67. doi: 10.1126/science.271.5245.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Potter M. D., Lo R. Y. Cloning and characterization of a gene from Pasteurella haemolytica A1 involved in lipopolysaccharide biosynthesis. FEMS Microbiol Lett. 1995 Jun 1;129(1):75–81. doi: 10.1016/0378-1097(95)00140-Z. [DOI] [PubMed] [Google Scholar]
  36. Preston A., Mandrell R. E., Gibson B. W., Apicella M. A. The lipooligosaccharides of pathogenic gram-negative bacteria. Crit Rev Microbiol. 1996;22(3):139–180. doi: 10.3109/10408419609106458. [DOI] [PubMed] [Google Scholar]
  37. Purvén M., Lagergård T. Haemophilus ducreyi, a cytotoxin-producing bacterium. Infect Immun. 1992 Mar;60(3):1156–1162. doi: 10.1128/iai.60.3.1156-1162.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roland K. L., Martin L. E., Esther C. R., Spitznagel J. K. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol. 1993 Jul;175(13):4154–4164. doi: 10.1128/jb.175.13.4154-4164.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ronald A. R., Plummer F. A. Chancroid and Haemophilus ducreyi. Ann Intern Med. 1985 May;102(5):705–707. doi: 10.7326/0003-4819-102-5-705. [DOI] [PubMed] [Google Scholar]
  40. Schwan E. T., Robertson B. D., Brade H., van Putten J. P. Gonococcal rfaF mutants express Rd2 chemotype LPS and do not enter epithelial host cells. Mol Microbiol. 1995 Jan;15(2):267–275. doi: 10.1111/j.1365-2958.1995.tb02241.x. [DOI] [PubMed] [Google Scholar]
  41. Schweda E. K., Jonasson J. A., Jansson P. E. Structural studies of lipooligosaccharides from Haemophilus ducreyi ITM 5535, ITM 3147, and a fresh clinical isolate, ACY1: evidence for intrastrain heterogeneity with the production of mutually exclusive sialylated or elongated glycoforms. J Bacteriol. 1995 Sep;177(18):5316–5321. doi: 10.1128/jb.177.18.5316-5321.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schweda E. K., Sundström A. C., Eriksson L. M., Jonasson J. A., Lindberg A. A. Structural studies of the cell envelope lipopolysaccharides from Haemophilus ducreyi strains ITM 2665 and ITM 4747. J Biol Chem. 1994 Apr 22;269(16):12040–12048. [PubMed] [Google Scholar]
  43. Scott J. R. Sex and the single circle: conjugative transposition. J Bacteriol. 1992 Oct;174(19):6005–6010. doi: 10.1128/jb.174.19.6005-6010.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spinola S. M., Hiltke T. J., Fortney K., Shanks K. L. The conserved 18,000-molecular-weight outer membrane protein of Haemophilus ducreyi has homology to PAL. Infect Immun. 1996 Jun;64(6):1950–1955. doi: 10.1128/iai.64.6.1950-1955.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Spinola S. M., Wild L. M., Apicella M. A., Gaspari A. A., Campagnari A. A. Experimental human infection with Haemophilus ducreyi. J Infect Dis. 1994 May;169(5):1146–1150. doi: 10.1093/infdis/169.5.1146. [DOI] [PubMed] [Google Scholar]
  46. St Geme J. W., 3rd, Falkow S. Haemophilus influenzae adheres to and enters cultured human epithelial cells. Infect Immun. 1990 Dec;58(12):4036–4044. doi: 10.1128/iai.58.12.4036-4044.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stevens M. K., Cope L. D., Radolf J. D., Hansen E. J. A system for generalized mutagenesis of Haemophilus ducreyi. Infect Immun. 1995 Aug;63(8):2976–2982. doi: 10.1128/iai.63.8.2976-2982.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stevens M. K., Klesney-Tait J., Lumbley S., Walters K. A., Joffe A. M., Radolf J. D., Hansen E. J. Identification of tandem genes involved in lipooligosaccharide expression by Haemophilus ducreyi. Infect Immun. 1997 Feb;65(2):651–660. doi: 10.1128/iai.65.2.651-660.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Telzak E. E., Chiasson M. A., Bevier P. J., Stoneburner R. L., Castro K. G., Jaffe H. W. HIV-1 seroconversion in patients with and without genital ulcer disease. A prospective study. Ann Intern Med. 1993 Dec 15;119(12):1181–1186. doi: 10.7326/0003-4819-119-12-199312150-00005. [DOI] [PubMed] [Google Scholar]
  50. Totten P. A., Norn D. V., Stamm W. E. Characterization of the hemolytic activity of Haemophilus ducreyi. Infect Immun. 1995 Nov;63(11):4409–4416. doi: 10.1128/iai.63.11.4409-4416.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tuffrey M., Alexander F., Ballard R. C., Taylor-Robinson D. Characterization of skin lesions in mice following intradermal inoculation of Haemophilus ducreyi. J Exp Pathol (Oxford) 1990 Apr;71(2):233–244. [PMC free article] [PubMed] [Google Scholar]
  52. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  53. Wasserheit J. N. Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis. 1992 Mar-Apr;19(2):61–77. [PubMed] [Google Scholar]
  54. Willson P. J., Albritton W. L., Slaney L., Setlow J. K. Characterization of a multiple antibiotic resistance plasmid from Haemophilus ducreyi. Antimicrob Agents Chemother. 1989 Sep;33(9):1627–1630. doi: 10.1128/aac.33.9.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zaidi T. S., Fleiszig S. M., Preston M. J., Goldberg J. B., Pier G. B. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci. 1996 May;37(6):976–986. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES