Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5087–5093. doi: 10.1128/jb.179.16.5087-5093.1997

Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.

D Quesada-Vincens 1, R Fellay 1, T Nasim 1, V Viprey 1, U Burger 1, J C Prome 1, W J Broughton 1, S Jabbouri 1
PMCID: PMC179366  PMID: 9260950

Abstract

Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.

Full Text

The Full Text of this article is available as a PDF (551.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson E. M., Palcic M. M., Hindsgaul O., Long S. R. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8418–8422. doi: 10.1073/pnas.91.18.8418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloemberg G. V., Thomas-Oates J. E., Lugtenberg B. J., Spaink H. P. Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol. 1994 Feb;11(4):793–804. doi: 10.1111/j.1365-2958.1994.tb00357.x. [DOI] [PubMed] [Google Scholar]
  3. Carlson R. W., Price N. P., Stacey G. The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):684–695. doi: 10.1094/mpmi-7-0684. [DOI] [PubMed] [Google Scholar]
  4. Carlson R. W., Sanjuan J., Bhat U. R., Glushka J., Spaink H. P., Wijfjes A. H., van Brussel A. A., Stokkermans T. J., Peters N. K., Stacey G. The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. J Biol Chem. 1993 Aug 25;268(24):18372–18381. [PubMed] [Google Scholar]
  5. Demont N., Debellé F., Aurelle H., Dénarié J., Promé J. C. Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem. 1993 Sep 25;268(27):20134–20142. [PubMed] [Google Scholar]
  6. Dénarié J., Debellé F., Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol. 1992;46:497–531. doi: 10.1146/annurev.mi.46.100192.002433. [DOI] [PubMed] [Google Scholar]
  7. Fellay R., Perret X., Viprey V., Broughton W. J., Brenner S. Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol. 1995 May;16(4):657–667. doi: 10.1111/j.1365-2958.1995.tb02428.x. [DOI] [PubMed] [Google Scholar]
  8. Fernández-López M., D'Haeze W., Mergaert P., Verplancke C., Promé J. C., Van Montagu M., Holsters M. Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol. 1996 Jun;20(5):993–1000. doi: 10.1111/j.1365-2958.1996.tb02540.x. [DOI] [PubMed] [Google Scholar]
  9. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher R. F., Long S. R. Rhizobium--plant signal exchange. Nature. 1992 Jun 25;357(6380):655–660. doi: 10.1038/357655a0. [DOI] [PubMed] [Google Scholar]
  11. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997 May 22;387(6631):394–401. doi: 10.1038/387394a0. [DOI] [PubMed] [Google Scholar]
  12. Geelen D., Leyman B., Mergaert P., Klarskov K., Van Montagu M., Geremia R., Holsters M. NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end. Mol Microbiol. 1995 Jul;17(2):387–397. doi: 10.1111/j.1365-2958.1995.mmi_17020387.x. [DOI] [PubMed] [Google Scholar]
  13. Geiger O., Spaink H. P., Kennedy E. P. Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4'-phosphopantetheine prosthetic group. J Bacteriol. 1991 May;173(9):2872–2878. doi: 10.1128/jb.173.9.2872-2878.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geremia R. A., Mergaert P., Geelen D., Van Montagu M., Holsters M. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2669–2673. doi: 10.1073/pnas.91.7.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  16. Jabbouri S., Fellay R., Talmont F., Kamalaprija P., Burger U., Relić B., Promé J. C., Broughton W. J. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. J Biol Chem. 1995 Sep 29;270(39):22968–22973. doi: 10.1074/jbc.270.39.22968. [DOI] [PubMed] [Google Scholar]
  17. John M., Röhrig H., Schmidt J., Wieneke U., Schell J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):625–629. doi: 10.1073/pnas.90.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones J. D., Gutterson N. An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene. 1987;61(3):299–306. doi: 10.1016/0378-1119(87)90193-4. [DOI] [PubMed] [Google Scholar]
  19. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., 2nd, Peterson K. M. pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994 May;16(5):800–802. [PubMed] [Google Scholar]
  20. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
  21. Lerouge P. Symbiotic host specificity between leguminous plants and rhizobia is determined by substituted and acylated glucosamine oligosaccharide signals. Glycobiology. 1994 Apr;4(2):127–134. doi: 10.1093/glycob/4.2.127. [DOI] [PubMed] [Google Scholar]
  22. Lewin A., Cervantes E., Chee-Hoong W., Broughton W. J. nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):317–326. doi: 10.1094/mpmi-3-317. [DOI] [PubMed] [Google Scholar]
  23. Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell. 1989 Jan 27;56(2):203–214. doi: 10.1016/0092-8674(89)90893-3. [DOI] [PubMed] [Google Scholar]
  24. Luka S., Sanjuan J., Carlson R. W., Stacey G. nolMNO genes of Bradyrhizobium japonicum are co-transcribed with nodYABCSUIJ, and nolO is involved in the synthesis of the lipo-oligosaccharide nodulation signals. J Biol Chem. 1993 Dec 25;268(36):27053–27059. [PubMed] [Google Scholar]
  25. López-Lara I. M., Blok-Tip L., Quinto C., Garcia M. L., Stacey G., Bloemberg G. V., Lamers G. E., Lugtenberg B. J., Thomas-Oates J. E., Spaink H. P. NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol. 1996 Jul;21(2):397–408. doi: 10.1046/j.1365-2958.1996.00644.x. [DOI] [PubMed] [Google Scholar]
  26. Mergaert P., D'Haeze W., Fernández-López M., Geelen D., Goethals K., Promé J. C., Van Montagu M., Holsters M. Fucosylation and arabinosylation of Nod factors in Azorhizobium caulinodans: involvement of nolK, nodZ as well as noeC and/or downstream genes. Mol Microbiol. 1996 Jul;21(2):409–419. doi: 10.1046/j.1365-2958.1996.6451366.x. [DOI] [PubMed] [Google Scholar]
  27. Morrison N. A., Hau C. Y., Trinick M. J., Shine J., Rolfe B. G. Heat curing of a sym plasmid in a fast-growing Rhizobium sp. that is able to nodulate legumes and the nonlegume Parasponia sp. J Bacteriol. 1983 Jan;153(1):527–531. doi: 10.1128/jb.153.1.527-531.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Poupot R., Martinez-Romero E., Promé J. C. Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry. 1993 Oct 5;32(39):10430–10435. doi: 10.1021/bi00090a019. [DOI] [PubMed] [Google Scholar]
  29. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  30. Price N. P., Relić B., Talmont F., Lewin A., Promé D., Pueppke S. G., Maillet F., Dénarié J., Promé J. C., Broughton W. J. Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol Microbiol. 1992 Dec;6(23):3575–3584. doi: 10.1111/j.1365-2958.1992.tb01793.x. [DOI] [PubMed] [Google Scholar]
  31. Quandt J., Hynes M. F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993 May 15;127(1):15–21. doi: 10.1016/0378-1119(93)90611-6. [DOI] [PubMed] [Google Scholar]
  32. Reddy P., Peterkofsky A., McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. doi: 10.1073/pnas.82.17.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roche P., Debellé F., Maillet F., Lerouge P., Faucher C., Truchet G., Dénarié J., Promé J. C. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell. 1991 Dec 20;67(6):1131–1143. doi: 10.1016/0092-8674(91)90290-f. [DOI] [PubMed] [Google Scholar]
  34. Röhrig H., Schmidt J., Wieneke U., Kondorosi E., Barlier I., Schell J., John M. Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3122–3126. doi: 10.1073/pnas.91.8.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schultze M., Staehelin C., Röhrig H., John M., Schmidt J., Kondorosi E., Schell J., Kondorosi A. In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2706–2709. doi: 10.1073/pnas.92.7.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spaink H. P., Sheeley D. M., van Brussel A. A., Glushka J., York W. S., Tak T., Geiger O., Kennedy E. P., Reinhold V. N., Lugtenberg B. J. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991 Nov 14;354(6349):125–130. doi: 10.1038/354125a0. [DOI] [PubMed] [Google Scholar]
  37. Spaink H. P., Wijfjes A. H., Lugtenberg B. J. Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol. 1995 Nov;177(21):6276–6281. doi: 10.1128/jb.177.21.6276-6281.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stacey G., Luka S., Sanjuan J., Banfalvi Z., Nieuwkoop A. J., Chun J. Y., Forsberg L. S., Carlson R. nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol. 1994 Feb;176(3):620–633. doi: 10.1128/jb.176.3.620-633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Staehelin C., Granado J., Müller J., Wiemken A., Mellor R. B., Felix G., Regenass M., Broughton W. J., Boller T. Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2196–2200. doi: 10.1073/pnas.91.6.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES