Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5104–5110. doi: 10.1128/jb.179.16.5104-5110.1997

Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.

Y Asai 1, S Kojima 1, H Kato 1, N Nishioka 1, I Kawagishi 1, M Homma 1
PMCID: PMC179368  PMID: 9260952

Abstract

The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation.

Full Text

The Full Text of this article is available as a PDF (487.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atsumi T., Maekawa Y., Tokuda H., Imae Y. Amiloride at pH 7.0 inhibits the Na(+)-driven flagellar motors of Vibrio alginolyticus but allows cell growth. FEBS Lett. 1992 Dec 14;314(2):114–116. doi: 10.1016/0014-5793(92)80954-f. [DOI] [PubMed] [Google Scholar]
  2. Atsumi T., Maekawa Y., Yamada T., Kawagishi I., Imae Y., Homma M. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J Bacteriol. 1996 Aug;178(16):5024–5026. doi: 10.1128/jb.178.16.5024-5026.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atsumi T., McCarter L., Imae Y. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature. 1992 Jan 9;355(6356):182–184. doi: 10.1038/355182a0. [DOI] [PubMed] [Google Scholar]
  4. Atsumi T., Sugiyama S., Cragoe E. J., Jr, Imae Y. Specific inhibition of the Na(+)-driven flagellar motors of alkalophilic Bacillus strains by the amiloride analog phenamil. J Bacteriol. 1990 Mar;172(3):1634–1639. doi: 10.1128/jb.172.3.1634-1639.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  6. Blair D. F., Berg H. C. Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. J Mol Biol. 1991 Oct 20;221(4):1433–1442. doi: 10.1016/0022-2836(91)90943-z. [DOI] [PubMed] [Google Scholar]
  7. Blair D. F., Berg H. C. Restoration of torque in defective flagellar motors. Science. 1988 Dec 23;242(4886):1678–1681. doi: 10.1126/science.2849208. [DOI] [PubMed] [Google Scholar]
  8. Blair D. F., Berg H. C. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell. 1990 Feb 9;60(3):439–449. doi: 10.1016/0092-8674(90)90595-6. [DOI] [PubMed] [Google Scholar]
  9. Blair D. F. How bacteria sense and swim. Annu Rev Microbiol. 1995;49:489–522. doi: 10.1146/annurev.mi.49.100195.002421. [DOI] [PubMed] [Google Scholar]
  10. Block S. M., Berg H. C. Successive incorporation of force-generating units in the bacterial rotary motor. 1984 May 31-Jun 6Nature. 309(5967):470–472. doi: 10.1038/309470a0. [DOI] [PubMed] [Google Scholar]
  11. Chun S. Y., Parkinson J. S. Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science. 1988 Jan 15;239(4837):276–278. doi: 10.1126/science.2447650. [DOI] [PubMed] [Google Scholar]
  12. De Mot R., Vanderleyden J. The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol. 1994 Apr;12(2):333–334. doi: 10.1111/j.1365-2958.1994.tb01021.x. [DOI] [PubMed] [Google Scholar]
  13. Francis N. R., Sosinsky G. E., Thomas D., DeRosier D. J. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol. 1994 Jan 28;235(4):1261–1270. doi: 10.1006/jmbi.1994.1079. [DOI] [PubMed] [Google Scholar]
  14. Fujisaki S., Hara H., Nishimura Y., Horiuchi K., Nishino T. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli. J Biochem. 1990 Dec;108(6):995–1000. doi: 10.1093/oxfordjournals.jbchem.a123327. [DOI] [PubMed] [Google Scholar]
  15. Garza A. G., Biran R., Wohlschlegel J. A., Manson M. D. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. J Mol Biol. 1996 May 3;258(2):270–285. doi: 10.1006/jmbi.1996.0249. [DOI] [PubMed] [Google Scholar]
  16. Grant S. G., Jessee J., Bloom F. R., Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645–4649. doi: 10.1073/pnas.87.12.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Homma M., Oota H., Kojima S., Kawagishi I., Imae Y. Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology. 1996 Oct;142(Pt 10):2777–2783. doi: 10.1099/13500872-142-10-2777. [DOI] [PubMed] [Google Scholar]
  18. Imae Y., Atsumi T. Na+-driven bacterial flagellar motors. J Bioenerg Biomembr. 1989 Dec;21(6):705–716. doi: 10.1007/BF00762688. [DOI] [PubMed] [Google Scholar]
  19. Kaim G., Dimroth P. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells. J Mol Biol. 1995 Nov 10;253(5):726–738. doi: 10.1006/jmbi.1995.0586. [DOI] [PubMed] [Google Scholar]
  20. Kawagishi I., Imagawa M., Imae Y., McCarter L., Homma M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol. 1996 May;20(4):693–699. doi: 10.1111/j.1365-2958.1996.tb02509.x. [DOI] [PubMed] [Google Scholar]
  21. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol. 1995 Sep;177(17):5158–5160. doi: 10.1128/jb.177.17.5158-5160.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kojima S., Atsumi T., Muramoto K., Kudo S., Kawagishi I., Homma M. Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor. J Mol Biol. 1997 Jan 24;265(3):310–318. doi: 10.1006/jmbi.1996.0732. [DOI] [PubMed] [Google Scholar]
  23. Kudo S., Magariyama Y., Aizawa S. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature. 1990 Aug 16;346(6285):677–680. doi: 10.1038/346677a0. [DOI] [PubMed] [Google Scholar]
  24. Magariyama Y., Sugiyama S., Muramoto K., Kawagishi I., Imae Y., Kudo S. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J. 1995 Nov;69(5):2154–2162. doi: 10.1016/S0006-3495(95)80089-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S. Very fast flagellar rotation. Nature. 1994 Oct 27;371(6500):752–752. doi: 10.1038/371752b0. [DOI] [PubMed] [Google Scholar]
  26. McCarter L. L. Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J Bacteriol. 1995 Mar;177(6):1595–1609. doi: 10.1128/jb.177.6.1595-1609.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCarter L. L. MotX, the channel component of the sodium-type flagellar motor. J Bacteriol. 1994 Oct;176(19):5988–5998. doi: 10.1128/jb.176.19.5988-5998.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McCarter L. L. MotY, a component of the sodium-type flagellar motor. J Bacteriol. 1994 Jul;176(14):4219–4225. doi: 10.1128/jb.176.14.4219-4225.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCarter L. L., Wright M. E. Identification of genes encoding components of the swarmer cell flagellar motor and propeller and a sigma factor controlling differentiation of Vibrio parahaemolyticus. J Bacteriol. 1993 Jun;175(11):3361–3371. doi: 10.1128/jb.175.11.3361-3371.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McCarter L., Hilmen M., Silverman M. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell. 1988 Jul 29;54(3):345–351. doi: 10.1016/0092-8674(88)90197-3. [DOI] [PubMed] [Google Scholar]
  31. Morales V. M., Bäckman A., Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991 Jan 2;97(1):39–47. doi: 10.1016/0378-1119(91)90007-x. [DOI] [PubMed] [Google Scholar]
  32. Muramoto K., Kawagishi I., Kudo S., Magariyama Y., Imae Y., Homma M. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J Mol Biol. 1995 Aug 4;251(1):50–58. doi: 10.1006/jmbi.1995.0415. [DOI] [PubMed] [Google Scholar]
  33. Muramoto K., Magariyama Y., Homma M., Kawagishi I., Sugiyama S., Imae Y., Kudo S. Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors. J Mol Biol. 1996 Jun 21;259(4):687–695. doi: 10.1006/jmbi.1996.0350. [DOI] [PubMed] [Google Scholar]
  34. Muramoto K., Sugiyama S., Cragoe E. J., Jr, Imae Y. Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J Biol Chem. 1994 Feb 4;269(5):3374–3380. [PubMed] [Google Scholar]
  35. Nguyen C. C., Saier M. H., Jr Structural and phylogenetic analysis of the MotA and MotB families of bacterial flagellar motor proteins. Res Microbiol. 1996 Jun;147(5):317–332. doi: 10.1016/0923-2508(96)84707-3. [DOI] [PubMed] [Google Scholar]
  36. Okunishi I., Kawagishi I., Homma M. Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J Bacteriol. 1996 Apr;178(8):2409–2415. doi: 10.1128/jb.178.8.2409-2415.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shah D. S., Armitage J. P., Sockett R. E. Rhodobacter sphaeroides WS8 expresses a polypeptide that is similar to MotB of Escherichia coli. J Bacteriol. 1995 May;177(10):2929–2932. doi: 10.1128/jb.177.10.2929-2932.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shah D. S., Sockett R. E. Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides, a bacterium with a unidirectional, stop-start flagellum. Mol Microbiol. 1995 Sep;17(5):961–969. doi: 10.1111/j.1365-2958.1995.mmi_17050961.x. [DOI] [PubMed] [Google Scholar]
  39. Sharp L. L., Zhou J., Blair D. F. Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7946–7950. doi: 10.1073/pnas.92.17.7946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sharp L. L., Zhou J., Blair D. F. Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry. 1995 Jul 18;34(28):9166–9171. doi: 10.1021/bi00028a028. [DOI] [PubMed] [Google Scholar]
  41. Stolz B., Berg H. C. Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli. J Bacteriol. 1991 Nov;173(21):7033–7037. doi: 10.1128/jb.173.21.7033-7037.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sugiyama S., Cragoe E. J., Jr, Imae Y. Amiloride, a specific inhibitor for the Na+-driven flagellar motors of alkalophilic Bacillus. J Biol Chem. 1988 Jun 15;263(17):8215–8219. [PubMed] [Google Scholar]
  43. Tang H., Braun T. F., Blair D. F. Motility protein complexes in the bacterial flagellar motor. J Mol Biol. 1996 Aug 16;261(2):209–221. doi: 10.1006/jmbi.1996.0453. [DOI] [PubMed] [Google Scholar]
  44. Tokuda H., Nakamura T., Unemoto T. Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus. Biochemistry. 1981 Jul 7;20(14):4198–4203. doi: 10.1021/bi00517a038. [DOI] [PubMed] [Google Scholar]
  45. Yamaguchi S., Aizawa S., Kihara M., Isomura M., Jones C. J., Macnab R. M. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol. 1986 Dec;168(3):1172–1179. doi: 10.1128/jb.168.3.1172-1179.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yoshida S., Sugiyama S., Hojo Y., Tokuda H., Imae Y. Intracellular Na+ kinetically interferes with the rotation of the Na(+)-driven flagellar motors of Vibrio alginolyticus. J Biol Chem. 1990 Nov 25;265(33):20346–20350. [PubMed] [Google Scholar]
  47. Zhao R., Pathak N., Jaffe H., Reese T. S., Khan S. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol. 1996 Aug 16;261(2):195–208. doi: 10.1006/jmbi.1996.0452. [DOI] [PubMed] [Google Scholar]
  48. Zhou J., Fazzio R. T., Blair D. F. Membrane topology of the MotA protein of Escherichia coli. J Mol Biol. 1995 Aug 11;251(2):237–242. doi: 10.1006/jmbi.1995.0431. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES