Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5157–5164. doi: 10.1128/jb.179.16.5157-5164.1997

A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes.

L Han 1, K A Reynolds 1
PMCID: PMC179375  PMID: 9260959

Abstract

ccr encoding crotonyl coenzyme A (CoA) reductase (CCR), which catalyzes the conversion of crotonyl-CoA to butyryl-CoA in the presence of NADPH, was previously cloned from Streptomyces collinus. We now report that a complete open reading frame, designated meaA, is located downstream from ccr. The predicted gene product showed 35% identity with methylmalonyl-CoA mutases from various sources. In addition, the predicted amino acid sequences of S. collinus ccr and meaA exhibit strong similarity to that of adhA (43% identity), a putative alcohol dehydrogenase gene, and meaA (62% identity) of Methylobacterium extorquens, respectively. Both adhA and meaA are involved in the assimilation of C1 and C2 compounds in an unknown pathway in the isocitrate lyase (ICL)-negative Methylobacterium. We have demonstrated that S. collinus can grow with acetate as its sole carbon source even though there is no detectable ICL, suggesting that in this organism ccr and meaA may also be involved in a pathway for the assimilation of C2 compounds. Previous studies with streptomycetes provided a precedent for a pathway that initiates with the condensation of two acetyl-CoA molecules to form butyryl-CoA, which is then transformed to succinyl-CoA with two separate CoB12-mediated rearrangements and a series of oxidations. The biological functions of ccr and meaA in this process were investigated by gene disruption. A ccr-blocked mutant showed no detectable crotonyl-CoA reductase activity and, compared to the wild-type strain, exhibited dramatically reduced growth when acetate was the sole carbon source. An meaA-blocked mutant also exhibited reduced growth on acetate. However, both methylmalonyl-CoA mutase and isobutyryl-CoA mutase, which catalyze the two CoB12-dependent rearrangements in this proposed pathway, were shown to be present in the meaA-blocked mutant. These results suggested that both ccr and meaA are involved in a novel pathway for the growth of S. collinus when acetate is its sole carbon source.

Full Text

The Full Text of this article is available as a PDF (414.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Birch A., Leiser A., Robinson J. A. Cloning, sequencing, and expression of the gene encoding methylmalonyl-coenzyme A mutase from Streptomyces cinnamonensis. J Bacteriol. 1993 Jun;175(11):3511–3519. doi: 10.1128/jb.175.11.3511-3519.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bott M., Dimroth P. Klebsiella pneumoniae genes for citrate lyase and citrate lyase ligase: localization, sequencing, and expression. Mol Microbiol. 1994 Oct;14(2):347–356. doi: 10.1111/j.1365-2958.1994.tb01295.x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chistoserdova L. V., Lidstrom M. E. Molecular characterization of a chromosomal region involved in the oxidation of acetyl-CoA to glyoxylate in the isocitrate-lyase-negative methylotroph Methylobacterium extorquens AM1. Microbiology. 1996 Jun;142(Pt 6):1459–1468. doi: 10.1099/13500872-142-6-1459. [DOI] [PubMed] [Google Scholar]
  8. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  10. Francalanci F., Davis N. K., Fuller J. Q., Murfitt D., Leadlay P. F. The subunit structure of methylmalonyl-CoA mutase from Propionibacterium shermanii. Biochem J. 1986 Jun 1;236(2):489–494. doi: 10.1042/bj2360489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grant S. G., Jessee J., Bloom F. R., Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645–4649. doi: 10.1073/pnas.87.12.4645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol. 1983 Jul;129(7):2257–2269. doi: 10.1099/00221287-129-7-2257. [DOI] [PubMed] [Google Scholar]
  13. Jansen R., Kalousek F., Fenton W. A., Rosenberg L. E., Ledley F. D. Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics. 1989 Feb;4(2):198–205. doi: 10.1016/0888-7543(89)90300-5. [DOI] [PubMed] [Google Scholar]
  14. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LaPorte D. C., Koshland D. E., Jr Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature. 1983 Sep 22;305(5932):286–290. doi: 10.1038/305286a0. [DOI] [PubMed] [Google Scholar]
  16. Larson J. L., Hershberger C. L. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid. 1986 May;15(3):199–209. doi: 10.1016/0147-619x(86)90038-7. [DOI] [PubMed] [Google Scholar]
  17. O'Hagan D., Rogers S. V., Duffin G. R., Reynolds K. A. The biosynthesis of monensin-A: thymine, beta-aminoisobutyrate and methacrylate metabolism in Streptomyces cinnamonensis. J Antibiot (Tokyo) 1995 Nov;48(11):1280–1287. doi: 10.7164/antibiotics.48.1280. [DOI] [PubMed] [Google Scholar]
  18. Rezanka T., Reichelová J., Kopecký J. Isobutyrate as a precursor of n-butyrate in the biosynthesis of tylosine and fatty acids. FEMS Microbiol Lett. 1991 Nov 1;68(1):33–36. doi: 10.1016/0378-1097(91)90390-v. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith L. M., Meijer W. G., Dijkhuizen L., Goodwin P. M. A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of methanol and ethanol by Methylobacterium extorquens AM1. Microbiology. 1996 Mar;142(Pt 3):675–684. doi: 10.1099/13500872-142-3-675. [DOI] [PubMed] [Google Scholar]
  21. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  22. Strauss G., Fuchs G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem. 1993 Aug 1;215(3):633–643. doi: 10.1111/j.1432-1033.1993.tb18074.x. [DOI] [PubMed] [Google Scholar]
  23. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  24. Wallace K. K., Bao Z. Y., Dai H., Digate R., Schuler G., Speedie M. K., Reynolds K. A. Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli. Eur J Biochem. 1995 Nov 1;233(3):954–962. doi: 10.1111/j.1432-1033.1995.954_3.x. [DOI] [PubMed] [Google Scholar]
  25. Wallace K. K., Zhao B., McArthur H. A., Reynolds K. A. In vivo analysis of straight-chain and branched-chain fatty acid biosynthesis in three actinomycetes. FEMS Microbiol Lett. 1995 Sep 1;131(2):227–234. doi: 10.1111/j.1574-6968.1995.tb07781.x. [DOI] [PubMed] [Google Scholar]
  26. Wilkemeyer M. F., Crane A. M., Ledley F. D. Primary structure and activity of mouse methylmalonyl-CoA mutase. Biochem J. 1990 Oct 15;271(2):449–455. doi: 10.1042/bj2710449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  28. el-Mansi E. M., MacKintosh C., Duncan K., Holms W. H., Nimmo H. G. Molecular cloning and over-expression of the glyoxylate bypass operon from Escherichia coli ML308. Biochem J. 1987 Mar 15;242(3):661–665. doi: 10.1042/bj2420661. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES