Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5171–5177. doi: 10.1128/jb.179.16.5171-5177.1997

Subunit and amino acid interactions in the Escherichia coli mannitol permease: a functional complementation study of coexpressed mutant permease proteins.

C A Saraceni-Richards 1, G R Jacobson 1
PMCID: PMC179377  PMID: 9260961

Abstract

Mannitol-specific enzyme II, or mannitol permease, of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system of Escherichia coli carries out the transport and phosphorylation of D-mannitol and is most active as a dimer in the membrane. We recently reported the importance of a glutamate residue at position 257 in the binding and transport of mannitol by this protein (C. Saraceni-Richards and G. R. Jacobson, J. Bacteriol. 179:1135-1142, 1997). Replacing Glu-257 with alanine (E257A) or glutamine (E257Q) eliminated detectable mannitol binding and transport by the permease. In contrast, an E257D mutant protein was able to bind and phosphorylate mannitol in a manner similar to that of the wild-type protein but was severely defective in mannitol uptake. In this study, we have coexpressed proteins containing mutations at position 257 with other inactive permeases containing mutations in each of the three domains of this protein. Activities of any active heterodimers resulting from this coexpression were measured. The results show that various inactive mutant permease proteins can complement proteins containing mutations at position 257. In addition, we show that both Glu at position 257 and His at position 195, both of which are in the membrane-bound C domain of the protein, must be on the same subunit of a permease dimer in order for efficient mannitol phosphorylation and uptake to occur. The results also suggest that mannitol bound to the opposite subunit within a permease heterodimer can be phosphorylated by the subunit containing the E257A mutation (which cannot bind mannitol) and support a model in which there are separate binding sites on each subunit within a permease dimer. Finally, we provide evidence from these studies that high-affinity mannitol binding is necessary for efficient transport by mannitol permease.

Full Text

The Full Text of this article is available as a PDF (234.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boer H., ten Hoeve-Duurkens R. H., Robillard G. T. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Biochemistry. 1996 Oct 1;35(39):12901–12908. doi: 10.1021/bi9611016. [DOI] [PubMed] [Google Scholar]
  2. Boer H., ten Hoeve-Duurkens R. H., Schuurman-Wolters G. K., Dijkstra A., Robillard G. T. Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli. Kinetic evidence that the E. coli mannitol transport protein is a functional dimer. J Biol Chem. 1994 Jul 8;269(27):17863–17871. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Elferink M. G., Driessen A. J., Robillard G. T. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation. J Bacteriol. 1990 Dec;172(12):7119–7125. doi: 10.1128/jb.172.12.7119-7125.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grisafi P. L., Scholle A., Sugiyama J., Briggs C., Jacobson G. R., Lengeler J. W. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities. J Bacteriol. 1989 May;171(5):2719–2727. doi: 10.1128/jb.171.5.2719-2727.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacobson G. R. Interrelationships between protein phosphorylation and oligomerization in transport and chemotaxis via the Escherichia coli mannitol phosphotransferase system. Res Microbiol. 1992 Jan;143(1):113–116. doi: 10.1016/0923-2508(92)90040-u. [DOI] [PubMed] [Google Scholar]
  7. Jacobson G. R., Lee C. A., Saier M. H., Jr Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem. 1979 Jan 25;254(2):249–252. [PubMed] [Google Scholar]
  8. Jacobson G. R., Saraceni-Richards C. The Escherichia coli mannitol permease as a model for transport via the bacterial phosphotransferase system. J Bioenerg Biomembr. 1993 Dec;25(6):621–626. doi: 10.1007/BF00770249. [DOI] [PubMed] [Google Scholar]
  9. Lengeler J. W., Jahreis K., Wehmeier U. F. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta. 1994 Nov 1;1188(1-2):1–28. doi: 10.1016/0005-2728(94)90017-5. [DOI] [PubMed] [Google Scholar]
  10. Lengeler J. W., Titgemeyer F., Vogler A. P., Wöhrl B. M. Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):489–504. doi: 10.1098/rstb.1990.0027. [DOI] [PubMed] [Google Scholar]
  11. Lolkema J. S., Dijkstra D. S., Robillard G. T. Mechanics of solute translocation catalyzed by enzyme IImtl of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry. 1992 Jun 23;31(24):5514–5521. doi: 10.1021/bi00139a013. [DOI] [PubMed] [Google Scholar]
  12. Lolkema J. S., Dijkstra D. S., ten Hoeve-Duurkens R. H., Robillard G. T. Interaction between the cytoplasmic and membrane-bound domains of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry. 1991 Jul 9;30(27):6721–6726. doi: 10.1021/bi00241a013. [DOI] [PubMed] [Google Scholar]
  13. Lolkema J. S., Dijkstra D. S., ten Hoeve-Duurkens R. H., Robillard G. T. The membrane-bound domain of the phosphotransferase enzyme IImtl of Escherichia coli constitutes a mannitol translocating unit. Biochemistry. 1990 Nov 27;29(47):10659–10663. doi: 10.1021/bi00499a012. [DOI] [PubMed] [Google Scholar]
  14. Lolkema J. S., Robillard G. T. Subunit structure and activity of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system solubilized in detergent. Biochemistry. 1990 Oct 30;29(43):10120–10125. doi: 10.1021/bi00495a016. [DOI] [PubMed] [Google Scholar]
  15. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  16. Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
  17. Pas H. H., Meyer G. H., Kruizinga W. H., Tamminga K. S., van Weeghel R. P., Robillard G. T. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem. 1991 Apr 15;266(11):6690–6692. [PubMed] [Google Scholar]
  18. Pas H. H., Robillard G. T. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Biochemistry. 1988 Aug 9;27(16):5835–5839. doi: 10.1021/bi00416a002. [DOI] [PubMed] [Google Scholar]
  19. Pas H. H., ten Hoeve-Duurkens R. H., Robillard G. T. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry. 1988 Jul 26;27(15):5520–5525. doi: 10.1021/bi00415a020. [DOI] [PubMed] [Google Scholar]
  20. Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saier M. H., Jr, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol. 1992 Mar;174(5):1433–1438. doi: 10.1128/jb.174.5.1433-1438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saraceni-Richards C. A., Jacobson G. R. A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. J Bacteriol. 1997 Feb;179(4):1135–1142. doi: 10.1128/jb.179.4.1135-1142.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stephan M. M., Jacobson G. R. Subunit interactions of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry. 1986 Jul 15;25(14):4046–4051. doi: 10.1021/bi00362a009. [DOI] [PubMed] [Google Scholar]
  24. Sugiyama J. E., Mahmoodian S., Jacobson G. R. Membrane topology analysis of Escherichia coli mannitol permease by using a nested-deletion method to create mtlA-phoA fusions. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9603–9607. doi: 10.1073/pnas.88.21.9603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weng Q. P., Elder J., Jacobson G. R. Site-specific mutagenesis of residues in the Escherichia coli mannitol permease that have been suggested to be important for its phosphorylation and chemoreception functions. J Biol Chem. 1992 Sep 25;267(27):19529–19535. [PubMed] [Google Scholar]
  26. Weng Q. P., Jacobson G. R. Role of a conserved histidine residue, His-195, in the activities of the Escherichia coli mannitol permease. Biochemistry. 1993 Oct 19;32(41):11211–11216. doi: 10.1021/bi00092a034. [DOI] [PubMed] [Google Scholar]
  27. White D. W., Jacobson G. R. Molecular cloning of the C-terminal domain of Escherichia coli D-mannitol permease: expression, phosphorylation, and complementation with C-terminal permease deletion proteins. J Bacteriol. 1990 Mar;172(3):1509–1515. doi: 10.1128/jb.172.3.1509-1515.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Weeghel R. P., van der Hoek Y. Y., Pas H. H., Elferink M., Keck W., Robillard G. T. Details of mannitol transport in Escherichia coli elucidated by site-specific mutagenesis and complementation of phosphorylation site mutants of the phosphoenolpyruvate-dependent mannitol-specific phosphotransferase system. Biochemistry. 1991 Feb 19;30(7):1768–1773. doi: 10.1021/bi00221a006. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES