Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5203–5210. doi: 10.1128/jb.179.16.5203-5210.1997

Changes in host cell energetics in response to bacteriophage PRD1 DNA entry.

R Daugelavicius 1, J K Bamford 1, D H Bamford 1
PMCID: PMC179381  PMID: 9260965

Abstract

Double-stranded DNA bacteriophage PRD1 infects a variety of gram-negative bacteria harboring an IncP-type conjugative plasmid. The plasmid codes for the DNA transfer phage receptor complex in the cell envelope. Our goal was, by using a collection of mutant phage particles for which the variables are the DNA content and/or the presence of the receptor-binding protein, to obtain information on the energy requirements for DNA entry as well as on alterations in the cellular energetics taking place during the first stages of infection. We studied the fluxes of tetraphenylphosphonium (TPP+), phenyldicarbaundecaborane (PCB-), and K+ ions as well as ATP through the envelope of Salmonella typhimurium cells. The final level of the membrane voltage (delta psi) indicator TPP+ accumulated by the infected cells exceeds the initial level before the infection. Besides the effects on TPP+ accumulation, PRD1 induces the leakage of ATP and K+ from the cytosol. All these events were induced only by DNA-containing infectious particles and were cellular ATP and delta psi dependent. PRD1-caused changes in delta psi and in PCB- binding differ considerably from those observed in other bacteriophage infections studied. These results are in accordance with the presence of a specific channel engaged in phage PRD1 DNA transport.

Full Text

The Full Text of this article is available as a PDF (283.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamford D. H., Caldentey J., Bamford J. K. Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res. 1995;45:281–319. doi: 10.1016/s0065-3527(08)60064-0. [DOI] [PubMed] [Google Scholar]
  2. Bamford D. H., Rouhiainen L., Takkinen K., Söderlund H. Comparison of the lipid-containing bacteriophages PRD1, PR3, PR4, PR5 and L17. J Gen Virol. 1981 Dec;57(Pt 2):365–373. doi: 10.1099/0022-1317-57-2-365. [DOI] [PubMed] [Google Scholar]
  3. Bamford D., Mindich L. Structure of the lipid-containing bacteriophage PRD1: disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride. J Virol. 1982 Dec;44(3):1031–1038. doi: 10.1128/jvi.44.3.1031-1038.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamford J. K., Bamford D. H. Capsomer proteins of bacteriophage PRD1, a bacterial virus with a membrane. Virology. 1990 Aug;177(2):445–451. doi: 10.1016/0042-6822(90)90508-o. [DOI] [PubMed] [Google Scholar]
  5. Bamford J. K., Bamford D. H. Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles. Virology. 1991 Mar;181(1):348–352. doi: 10.1016/0042-6822(91)90501-2. [DOI] [PubMed] [Google Scholar]
  6. Berrier C., Coulombe A., Houssin C., Ghazi A. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett. 1989 Dec 18;259(1):27–32. doi: 10.1016/0014-5793(89)81486-3. [DOI] [PubMed] [Google Scholar]
  7. Bonhivers M., Ghazi A., Boulanger P., Letellier L. FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5. EMBO J. 1996 Apr 15;15(8):1850–1856. [PMC free article] [PubMed] [Google Scholar]
  8. Boulanger P., Letellier L. Characterization of ion channels involved in the penetration of phage T4 DNA into Escherichia coli cells. J Biol Chem. 1988 Jul 15;263(20):9767–9775. [PubMed] [Google Scholar]
  9. Boulanger P., Letellier L. Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells. J Biol Chem. 1992 Feb 15;267(5):3168–3172. [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  11. Butcher S. J., Bamford D. H., Fuller S. D. DNA packaging orders the membrane of bacteriophage PRD1. EMBO J. 1995 Dec 15;14(24):6078–6086. doi: 10.1002/j.1460-2075.1995.tb00298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caldentey J., Hänninen A. L., Bamford D. H. Gene XV of bacteriophage PRD1 encodes a lytic enzyme with muramidase activity. Eur J Biochem. 1994 Oct 1;225(1):341–346. doi: 10.1111/j.1432-1033.1994.00341.x. [DOI] [PubMed] [Google Scholar]
  13. Cole S. P., Lanka E., Guiney D. G. Site-directed mutations in the relaxase operon of RP4. J Bacteriol. 1993 Aug;175(15):4911–4916. doi: 10.1128/jb.175.15.4911-4916.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Daugelavicius R., Bamford J. K., Grahn A. M., Lanka E., Bamford D. H. The IncP plasmid-encoded cell envelope-associated DNA transfer complex increases cell permeability. J Bacteriol. 1997 Aug;179(16):5195–5202. doi: 10.1128/jb.179.16.5195-5202.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis T. N., Muller E. D., Cronan J. E., Jr The virion of the lipid-containing bacteriophage PR4. Virology. 1982 Jul 30;120(2):287–306. doi: 10.1016/0042-6822(82)90031-9. [DOI] [PubMed] [Google Scholar]
  16. Duckworth D. H., Winkler H. H. Metabolism of T4 bacteriophage ghost-infected cells. II. Do ghosts cause a generalized permeability change? J Virol. 1972 Jun;9(6):917–922. doi: 10.1128/jvi.9.6.917-922.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grinius L. Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett. 1980 Apr 21;113(1):1–10. doi: 10.1016/0014-5793(80)80482-0. [DOI] [PubMed] [Google Scholar]
  18. Guihard G., Bénédetti H., Besnard M., Letellier L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J Biol Chem. 1993 Aug 25;268(24):17775–17780. [PubMed] [Google Scholar]
  19. Haase J., Lurz R., Grahn A. M., Bamford D. H., Lanka E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J Bacteriol. 1995 Aug;177(16):4779–4791. doi: 10.1128/jb.177.16.4779-4791.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hancock R. W., Braun V. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli. J Bacteriol. 1976 Feb;125(2):409–415. doi: 10.1128/jb.125.2.409-415.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kalasauskaite E. V., Kadisaite D. L., Daugelavicius R. J., Grinius L. L., Jasaitis A. A. Studies on energy supply for genetic processes. Requirement for membrane potential in Escherichia coli infection by phage T4. Eur J Biochem. 1983 Jan 17;130(1):123–130. [PubMed] [Google Scholar]
  23. Kalasauskaite E., Grinius L. The role of energy-yielding ATPase and respiratory chain at early stages of bacteriophage T4 infection. FEBS Lett. 1979 Mar 15;99(2):287–291. doi: 10.1016/0014-5793(79)80974-6. [DOI] [PubMed] [Google Scholar]
  24. Keweloh H., Bakker E. P. Permeability changes in the cytoplasmic membrane of Escherichia coli K-12 early after infection with bacteriophage T1. J Bacteriol. 1984 Oct;160(1):347–353. doi: 10.1128/jb.160.1.347-353.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  26. Kotilainen M. M., Grahn A. M., Bamford J. K., Bamford D. H. Binding of an Escherichia coli double-stranded DNA virus PRD1 to a receptor coded by an IncP-type plasmid. J Bacteriol. 1993 May;175(10):3089–3095. doi: 10.1128/jb.175.10.3089-3095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Labedan B., Heller K. B., Jasaitis A. A., Wilson T. H., Goldberg E. B. A membrane potential threshold for phage T4 DNA injection. Biochem Biophys Res Commun. 1980 Mar 28;93(2):625–630. doi: 10.1016/0006-291x(80)91124-9. [DOI] [PubMed] [Google Scholar]
  28. Labedan B., Letellier L. Membrane potential changes during the first steps of coliphage infection. Proc Natl Acad Sci U S A. 1981 Jan;78(1):215–219. doi: 10.1073/pnas.78.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lessl M., Balzer D., Weyrauch K., Lanka E. The mating pair formation system of plasmid RP4 defined by RSF1010 mobilization and donor-specific phage propagation. J Bacteriol. 1993 Oct;175(20):6415–6425. doi: 10.1128/jb.175.20.6415-6425.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liberman E. A., Topaly V. P., Tsofina L. M., Jasaitis A. A., Skulachev V. P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969 Jun 14;222(5198):1076–1078. doi: 10.1038/2221076a0. [DOI] [PubMed] [Google Scholar]
  31. Lundström K. H., Bamford D. H., Palva E. T., Lounatmaa K. Lipid-containing bacteriophage PR4: structure and life cycle. J Gen Virol. 1979 Jun;43(3):583–592. doi: 10.1099/0022-1317-43-3-583. [DOI] [PubMed] [Google Scholar]
  32. Lyra C., Savilahti H., Bamford D. H. High-frequency transfer of linear DNA containing 5'-covalently linked terminal proteins: electroporation of bacteriophage PRD1 genome into Escherichia coli. Mol Gen Genet. 1991 Aug;228(1-2):65–69. doi: 10.1007/BF00282449. [DOI] [PubMed] [Google Scholar]
  33. Mindich L., Bamford D., Goldthwaite C., Laverty M., Mackenzie G. Isolation of nonsense mutants of lipid-containing bacteriophage PRD1. J Virol. 1982 Dec;44(3):1013–1020. doi: 10.1128/jvi.44.3.1013-1020.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mindich L., Cohen J., Weisburd M. Isolation of nonsense suppressor mutants in Pseudomonas. J Bacteriol. 1976 Apr;126(1):177–182. doi: 10.1128/jb.126.1.177-182.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Olsen R. H., Siak J. S., Gray R. H. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol. 1974 Sep;14(3):689–699. doi: 10.1128/jvi.14.3.689-699.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. PUCK T. T., LEE H. H. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells. J Exp Med. 1955 Feb 1;101(2):151–175. doi: 10.1084/jem.101.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ponta H., Altendorf K. H., Schweiger M., Hirsch-Kaufmann M., Pfennig-Yeh M. L., Herrlich P. E. coli membranes become permeable to ions following T7-virus-infection. Mol Gen Genet. 1976 Dec 8;149(2):145–150. doi: 10.1007/BF00332882. [DOI] [PubMed] [Google Scholar]
  38. Rees C. E., Wilkins B. M. Protein transfer into the recipient cell during bacterial conjugation: studies with F and RP4. Mol Microbiol. 1990 Jul;4(7):1199–1205. doi: 10.1111/j.1365-2958.1990.tb00695.x. [DOI] [PubMed] [Google Scholar]
  39. Savilahti H., Caldentey J., Lundström K., Syväoja J. E., Bamford D. H. Overexpression, purification, and characterization of Escherichia coli bacteriophage PRD1 DNA polymerase. In vitro synthesis of full-length PRD1 DNA with purified proteins. J Biol Chem. 1991 Oct 5;266(28):18737–18744. [PubMed] [Google Scholar]
  40. Silver S., Levine E., Spielman P. M. Cation fluxes and permeability changes accompanying bacteriophage infection of Escherichia coli. J Virol. 1968 Aug;2(8):763–771. doi: 10.1128/jvi.2.8.763-771.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wagner E. F., Ponta H., Schweiger M. Development of Escherichia coli virus T1. The role of the proton-motive force. J Biol Chem. 1980 Jan 25;255(2):534–539. [PubMed] [Google Scholar]
  42. Wagner E. F., Schweiger M. Development of escherichia coli virus T1. ATP-mediated discrimination of gene expression. J Biol Chem. 1980 Jan 25;255(2):540–542. [PubMed] [Google Scholar]
  43. Waters V. L., Strack B., Pansegrau W., Lanka E., Guiney D. G. Mutational analysis of essential IncP alpha plasmid transfer genes traF and traG and involvement of traF in phage sensitivity. J Bacteriol. 1992 Oct;174(20):6666–6673. doi: 10.1128/jb.174.20.6666-6673.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES