Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5238–5240. doi: 10.1128/jb.179.16.5238-5240.1997

Transcription termination factor Rho is essential for Micrococcus luteus.

W L Nowatzke 1, E Keller 1, G Koch 1, J P Richardson 1
PMCID: PMC179387  PMID: 9260971

Abstract

The growth of Micrococcus luteus, a soil microorganism that belongs to the high-G+C gram-positive phylogenetic group, is prevented by bicyclomycin, an antibiotic that inhibits the activity of the M. luteus transcription termination factor Rho. A mutant that can grow in 0.3 mM bicyclomycin has a Rho that is insensitive to bicyclomycin and has the single amino acid residue change of Asp474 to Gly. These results indicate that the function of its Rho factor is essential for M. luteus and that growth of a gram-positive organism can be blocked by bicyclomycin.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babitzke P., Yanofsky C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):133–137. doi: 10.1073/pnas.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  3. Ingham C. J., Hunter I. S., Smith M. C. Isolation and sequencing of the rho gene from Streptomyces lividans ZX7 and characterization of the RNA-dependent NTPase activity of the overexpressed protein. J Biol Chem. 1996 Sep 6;271(36):21803–21807. doi: 10.1074/jbc.271.36.21803. [DOI] [PubMed] [Google Scholar]
  4. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  5. Miwa Y., Horiguchi T., Shigesada K. Structural and functional dissections of transcription termination factor rho by random mutagenesis. J Mol Biol. 1995 Dec 15;254(5):815–837. doi: 10.1006/jmbi.1995.0658. [DOI] [PubMed] [Google Scholar]
  6. Nishida M., Mine Y., Matsubara T., Goto S., Kuwahara S. Bicyclomycin, a new antibiotic. 3. In vitro and in vivo antimicrobial activity. J Antibiot (Tokyo) 1972 Oct;25(10):582–593. [PubMed] [Google Scholar]
  7. Nowatzke W. L., Burns C. M., Richardson J. P. Function of the novel subdomain in the RNA binding domain of transcription termination factor Rho from Micrococcus luteus. J Biol Chem. 1997 Jan 24;272(4):2207–2211. doi: 10.1074/jbc.272.4.2207. [DOI] [PubMed] [Google Scholar]
  8. Nowatzke W. L., Richardson J. P. Characterization of an unusual Rho factor from the high G + C gram-positive bacterium Micrococcus luteus. J Biol Chem. 1996 Jan 12;271(2):742–747. doi: 10.1074/jbc.271.2.742. [DOI] [PubMed] [Google Scholar]
  9. Nowatzke W., Richardson L., Richardson J. P. Purification of transcription termination factor Rho from Escherichia coli and Micrococcus luteus. Methods Enzymol. 1996;274:353–363. doi: 10.1016/s0076-6879(96)74030-2. [DOI] [PubMed] [Google Scholar]
  10. Opperman T., Richardson J. P. Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli rho gene. J Bacteriol. 1994 Aug;176(16):5033–5043. doi: 10.1128/jb.176.16.5033-5043.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sameshima J. H., Wek R. C., Hatfield G. W. Overlapping transcription and termination of the convergent ilvA and ilvY genes of Escherichia coli. J Biol Chem. 1989 Jan 15;264(2):1224–1231. [PubMed] [Google Scholar]
  12. Severinov K., Mustaev A., Kukarin A., Muzzin O., Bass I., Darst S. A., Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem. 1996 Nov 1;271(44):27969–27974. doi: 10.1074/jbc.271.44.27969. [DOI] [PubMed] [Google Scholar]
  13. Weilbaecher R., Hebron C., Feng G., Landick R. Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. Genes Dev. 1994 Dec 1;8(23):2913–2927. doi: 10.1101/gad.8.23.2913. [DOI] [PubMed] [Google Scholar]
  14. Wu A. M., Christie G. E., Platt T. Tandem termination sites in the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1981 May;78(5):2913–2917. doi: 10.1073/pnas.78.5.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zwiefka A., Kohn H., Widger W. R. Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli. Biochemistry. 1993 Apr 13;32(14):3564–3570. doi: 10.1021/bi00065a007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES