Abstract
Melanin is a fungal extracellular redox buffer which, in principle, can neutralize antimicrobial oxidants generated by immunologic effector cells, but its source of reducing equivalents is not known. We wondered whether Fe(II) generated by the external ferric reductase of fungi might have the physiologic function of reducing fungal melanin and thereby promoting pathogenesis. We observed that exposure of a melanin film electrode to reductants decreased the open-circuit potential (OCP) and reduced the area of a cyclic voltammetric reduction wave whereas exposure to oxidants produced the opposite effects. Exposure to 10, 100, 1,000 or 10,000 microM Fe(II) decreased the OCP of melanin by 0.015, 0.038, 0.100, and 0.120 V, respectively, relative to a silver-silver chloride standard, and decreased the area of the cyclic voltammetric reduction wave by 27, 35, 50, and 83%, respectively. Moreover, exposure to Fe(II) increased the buffering capacity by 44%, while exposure to millimolar dithionite did not increase the buffering capacity. The ratio of the amount of bound iron to the amount of the incremental increase in the following oxidation wave was approximately 1.0, suggesting that bound iron participates in buffering. Light absorption by melanin suspensions was decreased 14% by treatment with Fe(II), consistent with reduction of melanin. Light absorption by suspensions of melanized Cryptococcus neoformans was decreased 1.3% by treatment with Fe(II) (P < 0.05). Cultures of C. neoformans generated between 2 and 160 microM Fe(II) in culture supernatant, depending upon the strain and the conditions [the higher values were achieved by a constitutive ferric reductase mutant in high concentrations of Fe(III)]. We infer that Fe(II) can reduce melanin under physiologic conditions; moreover, it binds to melanin and cooperatively increases redox buffering. The data support a model for physiologic redox cycling of fungal melanin, whereby electrons exported by the yeast to form extracellular Fe(II) maintain the reducing capacity of the extracellular redox buffer.
Full Text
The Full Text of this article is available as a PDF (318.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
- Dixon D. M., Polak A., Szaniszlo P. J. Pathogenicity and virulence of wild-type and melanin-deficient Wangiella dermatitidis. J Med Vet Mycol. 1987 Apr;25(2):97–106. doi: 10.1080/02681218780000141. [DOI] [PubMed] [Google Scholar]
- Horak V., Gillette J. R. A study of the oxidation-reduction state of synthetic 3,4-dihydroxy-DL-phenylalanine melanin. Mol Pharmacol. 1971 Jul;7(4):429–433. [PubMed] [Google Scholar]
- Jacobson E. S., Emery H. S. Catecholamine uptake, melanization, and oxygen toxicity in Cryptococcus neoformans. J Bacteriol. 1991 Jan;173(1):401–403. doi: 10.1128/jb.173.1.401-403.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Hove E., Emery H. S. Antioxidant function of melanin in black fungi. Infect Immun. 1995 Dec;63(12):4944–4945. doi: 10.1128/iai.63.12.4944-4945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Vartivarian S. E. Iron assimilation in Cryptococcus neoformans. J Med Vet Mycol. 1992;30(6):443–450. [PubMed] [Google Scholar]
- Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesuisse E., Raguzzi F., Crichton R. R. Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol. 1987 Nov;133(11):3229–3236. doi: 10.1099/00221287-133-11-3229. [DOI] [PubMed] [Google Scholar]
- MASON H. S., INGRAM D. J., ALLEN B. The free radical property of melanins. Arch Biochem Biophys. 1960 Feb;86:225–230. doi: 10.1016/0003-9861(60)90409-4. [DOI] [PubMed] [Google Scholar]
- Menon I. A., Haberman H. F. Mechanisms of action of melanins. Br J Dermatol. 1977 Jul;97(1):109–112. doi: 10.1111/j.1365-2133.1977.tb15439.x. [DOI] [PubMed] [Google Scholar]
- Nyhus K. J., Wilborn A. T., Jacobson E. S. Ferric iron reduction by Cryptococcus neoformans. Infect Immun. 1997 Feb;65(2):434–438. doi: 10.1128/iai.65.2.434-438.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilas B., Sarna T., Kalyanaraman B., Swartz H. M. The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radic Biol Med. 1988;4(5):285–293. doi: 10.1016/0891-5849(88)90049-4. [DOI] [PubMed] [Google Scholar]
- Polacheck I., Platt Y., Aronovitch J. Catecholamines and virulence of Cryptococcus neoformans. Infect Immun. 1990 Sep;58(9):2919–2922. doi: 10.1128/iai.58.9.2919-2922.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarna T., Pilas B., Land E. J., Truscott T. G. Interaction of radicals from water radiolysis with melanin. Biochim Biophys Acta. 1986 Aug 6;883(1):162–167. doi: 10.1016/0304-4165(86)90147-9. [DOI] [PubMed] [Google Scholar]
- Swartz H. M., Sarna T., Zecca L. Modulation by neuromelanin of the availability and reactivity of metal ions. Ann Neurol. 1992;32 (Suppl):S69–S75. doi: 10.1002/ana.410320712. [DOI] [PubMed] [Google Scholar]
- Van Woert M. H. Oxidation of reduced nicotinamide adenine dinucleotide by melanin. Life Sci. 1967 Dec 15;6(24):2605–2612. doi: 10.1016/0024-3205(67)90110-5. [DOI] [PubMed] [Google Scholar]
- Wang Y., Aisen P., Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995 Aug;63(8):3131–3136. doi: 10.1128/iai.63.8.3131-3136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]