Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5347–5354. doi: 10.1128/jb.179.17.5347-5354.1997

Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos.

M Miranda 1, A Ramos 1, M Veiga-da-Cunha 1, M C Loureiro-Dias 1, H Santos 1
PMCID: PMC179403  PMID: 9286987

Abstract

The sugar-induced inhibition of malolactic fermentation in cell suspensions of Leuconostoc oenos, recently reclassified as Oenococcus oeni (L. M. T. Dicks, F. Dellaglio, and M. D. Collins, Int. J. Syst. Bacteriol. 45:395-397, 1995) was investigated by in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and manometric techniques. At 2 mM, glucose inhibited malolactic fermentation by 50%, and at 5 mM or higher it caused a maximum inhibitory effect of ca. 70%. Galactose, trehalose, maltose, and mannose caused inhibitory effects similar to that observed with glucose, but ribose and 2-deoxyglucose did not affect the rate of malolactic activity. The addition of fructose or citrate completely relieved the glucose-induced inhibition. Glucose was not catabolized by permeabilized cells, and inhibition of malolactic fermentation was not observed under these conditions. 31P NMR analysis of perchloric acid extracts of cells obtained during glucose-malate cometabolism showed high intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate, and glycerol-3-phosphate. Glucose-6-phosphate, 6-phosphogluconate, and NAD(P)H inhibited the malolactic activity in permeabilized cells or cell extracts, whereas NADP+ had no inhibitory effect. The purified malolactic enzyme was strongly inhibited by NADH, whereas all the other above-mentioned metabolites exerted no inhibitory effect, showing that NADH was responsible for the inhibition of malolactic activity in vivo. The concentration of NADH required to inhibit the activity of the malolactic enzyme by 50% was ca. 25 microM. The data provide a coherent biochemical basis to understand the glucose-induced inhibition of malolactic fermentation in L. oenos.

Full Text

The Full Text of this article is available as a PDF (262.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansanay V., Dequin S., Blondin B., Barre P. Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis. FEBS Lett. 1993 Oct 11;332(1-2):74–80. doi: 10.1016/0014-5793(93)80488-g. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Caspritz G., Radler F. Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chem. 1983 Apr 25;258(8):4907–4910. [PubMed] [Google Scholar]
  4. Cavin J. F., Prevost H., Lin J., Schmitt P., Divies C. Medium for Screening Leuconostoc oenos Strains Defective in Malolactic Fermentation. Appl Environ Microbiol. 1989 Mar;55(3):751–753. doi: 10.1128/aem.55.3.751-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Champagne C. P., Gardner N., Doyon G. Production of Leuconostoc oenos Biomass under pH Control. Appl Environ Microbiol. 1989 Oct;55(10):2488–2492. doi: 10.1128/aem.55.10.2488-2492.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox D. J., Henick-Kling T. Chemiosmotic energy from malolactic fermentation. J Bacteriol. 1989 Oct;171(10):5750–5752. doi: 10.1128/jb.171.10.5750-5752.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denayrolles M., Aigle M., Lonvaud-Funel A. Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes. FEMS Microbiol Lett. 1994 Feb 1;116(1):79–86. doi: 10.1111/j.1574-6968.1994.tb06679.x. [DOI] [PubMed] [Google Scholar]
  8. Dicks L. M., Dellaglio F., Collins M. D. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol. 1995 Apr;45(2):395–397. doi: 10.1099/00207713-45-2-395. [DOI] [PubMed] [Google Scholar]
  9. Fleet G. H., Lafon-Lafourcade S., Ribéreau-Gayon P. Evolution of yeasts and lactic Acid bacteria during fermentation and storage of bordeaux wines. Appl Environ Microbiol. 1984 Nov;48(5):1034–1038. doi: 10.1128/aem.48.5.1034-1038.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Labarre C., Guzzo J., Cavin J. F., Diviès C. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol. 1996 Apr;62(4):1274–1282. doi: 10.1128/aem.62.4.1274-1282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lafon-Lafourcade S., Carre E., Ribéreau-Gayon P. Occurrence of lactic Acid bacteria during the different stages of vinification and conservation of wines. Appl Environ Microbiol. 1983 Oct;46(4):874–880. doi: 10.1128/aem.46.4.874-880.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lonvaud-Funel A., de Saad A. M. Purification and Properties of a Malolactic Enzyme from a Strain of Leuconostoc mesenteroides Isolated from Grapes. Appl Environ Microbiol. 1982 Feb;43(2):357–361. doi: 10.1128/aem.43.2.357-361.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pilone G. J., Kunkee R. E. Stimulatory Effect of Malo-Lactic Fermentation on the Growth Rate of Leuconostoc oenos. Appl Environ Microbiol. 1976 Sep;32(3):405–408. doi: 10.1128/aem.32.3.405-408.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ramos A., Poolman B., Santos H., Lolkema J. S., Konings W. N. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol. 1994 Aug;176(16):4899–4905. doi: 10.1128/jb.176.16.4899-4905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ramos A., Santos H. Citrate and Sugar Cofermentation in Leuconostoc oenos, a (sup13)C Nuclear Magnetic Resonance Study. Appl Environ Microbiol. 1996 Jul;62(7):2577–2585. doi: 10.1128/aem.62.7.2577-2585.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Salema M., Capucho I., Poolman B., San Romão M. V., Dias M. C. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni). J Bacteriol. 1996 Sep;178(18):5537–5539. doi: 10.1128/jb.178.18.5537-5539.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salema M., Lolkema J. S., San Romão M. V., Lourero Dias M. C. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol. 1996 Jun;178(11):3127–3132. doi: 10.1128/jb.178.11.3127-3132.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salou P., Loubiere P., Pareilleux A. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol. 1994 May;60(5):1459–1466. doi: 10.1128/aem.60.5.1459-1466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schütz M., Radler F. Das "Malatenzym" von Lactobacillus plantarum und Leuconostoc mesenteroides. Arch Mikrobiol. 1973 Jun 6;91(3):183–202. doi: 10.1007/BF00408907. [DOI] [PubMed] [Google Scholar]
  20. Schütz M., Radler F. Das Vorkommen von Malatenzym und Malo-Lactat-Enzym bei verschiedenen Milchsäurebakterien. Arch Mikrobiol. 1974 Mar 28;96(4):329–339. [PubMed] [Google Scholar]
  21. Veiga-Da-Cunha M., Firme P., Romão M. V., Santos H. Application of C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by Leuconostoc oenos. Appl Environ Microbiol. 1992 Jul;58(7):2271–2279. doi: 10.1128/aem.58.7.2271-2279.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Veiga-da-Cunha M., Santos H., Van Schaftingen E. Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol. 1993 Jul;175(13):3941–3948. doi: 10.1128/jb.175.13.3941-3948.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES