Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5391–5397. doi: 10.1128/jb.179.17.5391-5397.1997

Regulation of expression of the Lactobacillus pentosus xylAB operon.

B C Lokman 1, M Heerikhuisen 1, R J Leer 1, A van den Broek 1, Y Borsboom 1, S Chaillou 1, P W Postma 1, P H Pouwels 1
PMCID: PMC179408  PMID: 9286992

Abstract

The xylose cluster of Lactobacillus pentosus consists of five genes, two of which, xylAB, form an operon and code for the enzymes involved in the catabolism of xylose, while a third encodes a regulatory protein, XylR. By introduction of a multicopy plasmid carrying the xyl operator and by disruption of the chromosomal xylR gene, it was shown that L. pentosus xylR encodes a repressor. Constitutive expression of xylAB in the xylR mutant is repressed by glucose, indicating that glucose repression does not require XylR. The xylR mutant displayed a prolonged lag phase compared to wild-type bacteria when bacteria were shifted from glucose to xylose medium. Differences in the growth rate in xylose medium at different stages of growth are not correlated with differences in levels of xylAB transcription in L. pentosus wild-type or xylR mutant bacteria but are positively correlated in Lactobacillus casei with a plasmid containing xylAB. Glucose repression was further investigated with a ccpA mutant. An 875-bp internal fragment of the ccpA gene of L. pentosus was isolated by PCR and used to construct a ccpA knockout mutant. Transcription analysis of L. pentosus xylA showed that CcpA is involved in glucose repression. CcpA was also shown to be involved in glucose repression of the alpha-amylase promoter of Lactobacillus amylovorus by demonstrating that glucose repression of the chloramphenicol acetyltransferase gene under control of the alpha-amylase promoter is strongly reduced in the L. pentosus ccpA mutant strain.

Full Text

The Full Text of this article is available as a PDF (622.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brückner R. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene. 1992 Dec 1;122(1):187–192. doi: 10.1016/0378-1119(92)90048-t. [DOI] [PubMed] [Google Scholar]
  2. Debarbouille M., Arnaud M., Fouet A., Klier A., Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. doi: 10.1128/jb.172.7.3966-3973.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Egeter O., Brückner R. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol Microbiol. 1996 Aug;21(4):739–749. doi: 10.1046/j.1365-2958.1996.301398.x. [DOI] [PubMed] [Google Scholar]
  4. Fitzsimons A., Hols P., Jore J., Leer R. J., O'Connell M., Delcour J. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus alpha-amylase gene. Appl Environ Microbiol. 1994 Oct;60(10):3529–3535. doi: 10.1128/aem.60.10.3529-3535.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graves M. C., Rabinowitz J. C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. J Biol Chem. 1986 Aug 25;261(24):11409–11415. [PubMed] [Google Scholar]
  6. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  7. Houman F., Diaz-Torres M. R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. doi: 10.1016/0092-8674(90)90392-r. [DOI] [PubMed] [Google Scholar]
  8. Hueck C. J., Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol. 1995 Feb;15(3):395–401. doi: 10.1111/j.1365-2958.1995.tb02252.x. [DOI] [PubMed] [Google Scholar]
  9. Hueck C. J., Hillen W., Saier M. H., Jr Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol. 1994 Sep;145(7):503–518. doi: 10.1016/0923-2508(94)90028-0. [DOI] [PubMed] [Google Scholar]
  10. Hueck C. J., Kraus A., Schmiedel D., Hillen W. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Mol Microbiol. 1995 Jun;16(5):855–864. doi: 10.1111/j.1365-2958.1995.tb02313.x. [DOI] [PubMed] [Google Scholar]
  11. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):209–224. doi: 10.1007/BF00399499. [DOI] [PubMed] [Google Scholar]
  12. Kauder C., Allmansberger R., Gärtner D., Schmiedel D., Hillen W. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. FEMS Microbiol Lett. 1993 May 1;109(1):81–84. doi: 10.1111/j.1574-6968.1993.tb06147.x. [DOI] [PubMed] [Google Scholar]
  13. Kraus A., Hueck C., Gärtner D., Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol. 1994 Mar;176(6):1738–1745. doi: 10.1128/jb.176.6.1738-1745.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kreuzer P., Gärtner D., Allmansberger R., Hillen W. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol. 1989 Jul;171(7):3840–3845. doi: 10.1128/jb.171.7.3840-3845.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Le Coq D., Lindner C., Krüger S., Steinmetz M., Stülke J. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol. 1995 Mar;177(6):1527–1535. doi: 10.1128/jb.177.6.1527-1535.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lokman B. C., Leer R. J., van Sorge R., Pouwels P. H. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Mol Gen Genet. 1994 Oct 17;245(1):117–125. doi: 10.1007/BF00279757. [DOI] [PubMed] [Google Scholar]
  17. Lokman B. C., van Santen P., Verdoes J. C., Krüse J., Leer R. J., Posno M., Pouwels P. H. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet. 1991 Nov;230(1-2):161–169. doi: 10.1007/BF00290664. [DOI] [PubMed] [Google Scholar]
  18. Miwa Y., Saikawa M., Fujita Y. Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology. 1994 Oct;140(Pt 10):2567–2575. doi: 10.1099/00221287-140-10-2567. [DOI] [PubMed] [Google Scholar]
  19. Posno M., Heuvelmans P. T., van Giezen M. J., Lokman B. C., Leer R. J., Pouwels P. H. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol. 1991 Sep;57(9):2764–2766. doi: 10.1128/aem.57.9.2764-2766.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Posno M., Leer R. J., van Luijk N., van Giezen M. J. F., Heuvelmans P. T. H. M., Lokman B. C., Pouwels P. H. Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors. Appl Environ Microbiol. 1991 Jun;57(6):1822–1828. doi: 10.1128/aem.57.6.1822-1828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pouwels P. H., van Luijk N., Leer R. J., Posno M. Control of replication of the Lactobacillus pentosus plasmid p353-2: evidence for a mechanism involving transcriptional attenuation of the gene coding for the replication protein. Mol Gen Genet. 1994 Mar;242(5):614–622. doi: 10.1007/BF00285285. [DOI] [PubMed] [Google Scholar]
  22. Rygus T., Hillen W. Catabolite repression of the xyl operon in Bacillus megaterium. J Bacteriol. 1992 May;174(9):3049–3055. doi: 10.1128/jb.174.9.3049-3055.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rygus T., Scheler A., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol. 1991;155(6):535–542. doi: 10.1007/BF00245346. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheler A., Hillen W. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference. Mol Microbiol. 1994 Aug;13(3):505–512. doi: 10.1111/j.1365-2958.1994.tb00445.x. [DOI] [PubMed] [Google Scholar]
  26. Scheler A., Rygus T., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch Microbiol. 1991;155(6):526–534. doi: 10.1007/BF00245345. [DOI] [PubMed] [Google Scholar]
  27. Sizemore C., Wieland B., Götz F., Hillen W. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol. 1992 May;174(9):3042–3048. doi: 10.1128/jb.174.9.3042-3048.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weickert M. J., Chambliss G. H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. doi: 10.1073/pnas.87.16.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wray L. V., Jr, Pettengill F. K., Fisher S. H. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol. 1994 Apr;176(7):1894–1902. doi: 10.1128/jb.176.7.1894-1902.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES