Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5436–5441. doi: 10.1128/jb.179.17.5436-5441.1997

Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity.

W W Lorenz 1, J Wiegel 1
PMCID: PMC179414  PMID: 9286998

Abstract

The genes encoding acetyl xylan esterase 1 (axe1) and a beta-xylosidase (xylB) have been cloned and sequenced from Thermoanaerobacterium sp. strain JW/SL YS485. axe1 is located 22 nucleotides 3' of the xylB sequence. The identity of axe1 was confirmed by comparison of the deduced amino acid sequence to peptide sequence analysis data from purified acetyl xylan esterase 1. The xylB gene was identified by expression cloning and by sequence homology to known beta-xylosidases. Plasmids which independently expressed either acetyl xylan esterase 1 (pAct1BK) or beta-xylosidase (pXylo-1.1) were constructed in Escherichia coli. Plasmid pXylAct-1 contained both genes joined at a unique EcoRI site and expressed both activities. Substrate specificity, pH, and temperature optima were determined for partially purified recombinant acetyl xylan esterase 1 and for crude recombinant beta-xylosidase. Similarity searches showed that the axe1 and xylB genes were homologs of the ORF-1 and xynB genes, respectively, isolated from Thermoanaerobacterium saccharolyticum. Although the deduced sequence of the axe1 product had no significant amino acid sequence similarity to any reported acetyl xylan esterase sequence, it did have strong similarity to cephalosporin C deacetylase from Bacillus subtilis. Recombinant acetyl xylan esterase 1 was found to have thermostable deacetylase activity towards a number of acetylated substrates, including cephalosporin C and 7-aminocephalosporanic acid.

Full Text

The Full Text of this article is available as a PDF (354.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba T., Shinke R., Nanmori T. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol. 1994 Jul;60(7):2252–2258. doi: 10.1128/aem.60.7.2252-2258.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature. 1988 Aug 11;334(6182):528–530. doi: 10.1038/334528a0. [DOI] [PubMed] [Google Scholar]
  5. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  6. Christov L. P., Prior B. A. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol. 1993 Jun;15(6):460–475. doi: 10.1016/0141-0229(93)90078-g. [DOI] [PubMed] [Google Scholar]
  7. Coughlan M. P., Hazlewood G. P. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):259–289. [PubMed] [Google Scholar]
  8. Döll B., Pleschka S., Zimmer G., Herrler G. Surface glycoprotein of influenza C virus: inactivation and restoration of the acetylesterase activity on nitrocellulose. Virus Res. 1993 Oct;30(1):105–110. doi: 10.1016/0168-1702(93)90020-n. [DOI] [PubMed] [Google Scholar]
  9. Ferreira L. M., Wood T. M., Williamson G., Faulds C., Hazlewood G. P., Black G. W., Gilbert H. J. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J. 1993 Sep 1;294(Pt 2):349–355. doi: 10.1042/bj2940349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JEFFERY J. D., ABRAHAM E. P., NEWTON G. G. Deacetylcephalosporin C. Biochem J. 1961 Dec;81:591–596. doi: 10.1042/bj0810591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Leach B. S., Collawn J. F., Jr, Fish W. W. Behavior of glycopolypeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate. Biochemistry. 1980 Dec 9;19(25):5734–5741. doi: 10.1021/bi00566a011. [DOI] [PubMed] [Google Scholar]
  15. Lee Y. E., Zeikus J. G. Genetic organization, sequence and biochemical characterization of recombinant beta-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J Gen Microbiol. 1993 Jun;139(Pt 6):1235–1243. doi: 10.1099/00221287-139-6-1235. [DOI] [PubMed] [Google Scholar]
  16. Liu S. Y., Gherardini F. C., Matuschek M., Bahl H., Wiegel J. Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol. 1996 Mar;178(6):1539–1547. doi: 10.1128/jb.178.6.1539-1547.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lüthi E., Love D. R., McAnulty J., Wallace C., Caughey P. A., Saul D., Bergquist P. L. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum". Appl Environ Microbiol. 1990 Apr;56(4):1017–1024. doi: 10.1128/aem.56.4.1017-1024.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Margolles-Clark E., Tenkanen M., Söderlund H., Penttilä M. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem. 1996 May 1;237(3):553–560. doi: 10.1111/j.1432-1033.1996.0553p.x. [DOI] [PubMed] [Google Scholar]
  19. Mitsushima K., Takimoto A., Sonoyama T., Yagi S. Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis. Appl Environ Microbiol. 1995 Jun;61(6):2224–2229. doi: 10.1128/aem.61.6.2224-2229.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shao W., Deblois S., Wiegel J. A High-Molecular-Weight, Cell-Associated Xylanase Isolated from Exponentially Growing Thermoanaerobacterium sp. Strain JW/SL-YS485. Appl Environ Microbiol. 1995 Mar;61(3):937–940. doi: 10.1128/aem.61.3.937-940.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shao W., Obi S., Puls J., Wiegel J. Purification and Characterization of the (alpha)-Glucuronidase from Thermoanaerobacterium sp. Strain JW/SL-YS485, an Important Enzyme for the Utilization of Substituted Xylans. Appl Environ Microbiol. 1995 Mar;61(3):1077–1081. doi: 10.1128/aem.61.3.1077-1081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shao W., Wiegel J. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol. 1992 Sep;174(18):5848–5853. doi: 10.1128/jb.174.18.5848-5853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shao W., Wiegel J. Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol. 1995 Feb;61(2):729–733. doi: 10.1128/aem.61.2.729-733.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shareck F., Biely P., Morosoli R., Kluepfel D. Analysis of DNA flanking the xlnB locus of Streptomyces lividans reveals genes encoding acetyl xylan esterase and the RNA component of ribonuclease P. Gene. 1995 Feb 3;153(1):105–109. doi: 10.1016/0378-1119(94)00763-i. [DOI] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Thomson J. A. Molecular biology of xylan degradation. FEMS Microbiol Rev. 1993 Jan;10(1-2):65–82. doi: 10.1111/j.1574-6968.1993.tb05864.x. [DOI] [PubMed] [Google Scholar]
  27. Wagaman P. C., Spence H. A., O'Callaghan R. J. Detection of influenza C virus by using an in situ esterase assay. J Clin Microbiol. 1989 May;27(5):832–836. doi: 10.1128/jcm.27.5.832-836.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whitehead T. R., Hespell R. B. The genes for three xylan-degrading activities from Bacteroides ovatus are clustered in a 3.8-kilobase region. J Bacteriol. 1990 May;172(5):2408–2412. doi: 10.1128/jb.172.5.2408-2412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wieslander L. A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels. Anal Biochem. 1979 Oct 1;98(2):305–309. doi: 10.1016/0003-2697(79)90145-3. [DOI] [PubMed] [Google Scholar]
  30. Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES