Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5494–5501. doi: 10.1128/jb.179.17.5494-5501.1997

Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.

L V Wray Jr 1, A E Ferson 1, S H Fisher 1
PMCID: PMC179421  PMID: 9287005

Abstract

Expression of urease, which is encoded by the ureABC operon, is regulated in response to nitrogen availability in Bacillus subtilis. Three ureABC promoters were identified in primer extension experiments and by examination of beta-galactosidase expression from ure-lacZ fusions. P1, a low-level constitutive promoter, lies immediately upstream of ureA. The P2 promoter is transcribed by the E sigmaH form of RNA polymerase and initiates transcription 270 bp upstream of the ureA start codon. The transcriptional start site for the sigmaA-dependent P3 promoter is located 839 bp upstream of the ureA start codon. To identify transcription factors that control ureABC expression, regulation of the P2 and P3 promoters was examined in wild-type and mutant strains. During rapid growth in minimal medium containing glucose and amino acids, CodY represses expression of the P2 and P3 promoters 30- and 60-fold, respectively. TnrA activates expression of the P3 promoter 10-fold in nitrogen-limited cells, while GlnR represses transcription from the P3 promoter 55-fold during growth on excess nitrogen. Expression of the ureABC operon increases 10-fold at the end of exponential growth in nutrient sporulation medium. This elevation in expression results from the relief of CodY-mediated repression during exponential growth and increased sigmaH-dependent transcription during stationary phase.

Full Text

The Full Text of this article is available as a PDF (292.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Fisher S. H. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol. 1991 Jan;173(1):23–27. doi: 10.1128/jb.173.1.23-27.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson M. R., Wray L. V., Jr, Fisher S. H. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. J Bacteriol. 1993 Jul;175(14):4282–4289. doi: 10.1128/jb.175.14.4282-4289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson M. R., Wray L. V., Jr, Fisher S. H. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. J Bacteriol. 1990 Sep;172(9):4758–4765. doi: 10.1128/jb.172.9.4758-4765.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biaudet V., Samson F., Anagnostopoulos C., Ehrlich S. D., Bessières P. Computerized genetic map of Bacillus subtilis. Microbiology. 1996 Oct;142(Pt 10):2669–2729. doi: 10.1099/13500872-142-10-2669. [DOI] [PubMed] [Google Scholar]
  5. Brown S. W., Sonenshein A. L. Autogenous regulation of the Bacillus subtilis glnRA operon. J Bacteriol. 1996 Apr;178(8):2450–2454. doi: 10.1128/jb.178.8.2450-2454.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. doi: 10.1016/0378-1119(88)90606-3. [DOI] [PubMed] [Google Scholar]
  7. Collins C. M., D'Orazio S. E. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993 Sep;9(5):907–913. doi: 10.1111/j.1365-2958.1993.tb01220.x. [DOI] [PubMed] [Google Scholar]
  8. Collins C. M., Gutman D. M., Laman H. Identification of a nitrogen-regulated promoter controlling expression of Klebsiella pneumoniae urease genes. Mol Microbiol. 1993 Apr;8(1):187–198. doi: 10.1111/j.1365-2958.1993.tb01215.x. [DOI] [PubMed] [Google Scholar]
  9. Cruz-Ramos H., Glaser P., Wray L. V., Jr, Fisher S. H. The Bacillus subtilis ureABC operon. J Bacteriol. 1997 May;179(10):3371–3373. doi: 10.1128/jb.179.10.3371-3373.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Orazio S. E., Collins C. M. UreR activates transcription at multiple promoters within the plasmid-encoded urease locus of the Enterobacteriaceae. Mol Microbiol. 1995 Apr;16(1):145–155. doi: 10.1111/j.1365-2958.1995.tb02399.x. [DOI] [PubMed] [Google Scholar]
  11. D'Orazio S. E., Thomas V., Collins C. M. Activation of transcription at divergent urea-dependent promoters by the urease gene regulator UreR. Mol Microbiol. 1996 Aug;21(3):643–655. doi: 10.1111/j.1365-2958.1996.tb02572.x. [DOI] [PubMed] [Google Scholar]
  12. Débarbouillé M., Martin-Verstraete I., Kunst F., Rapoport G. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9092–9096. doi: 10.1073/pnas.88.20.9092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferson A. E., Wray L. V., Jr, Fisher S. H. Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol Microbiol. 1996 Nov;22(4):693–701. doi: 10.1046/j.1365-2958.1996.d01-1720.x. [DOI] [PubMed] [Google Scholar]
  14. Fisher S. H., Rohrer K., Ferson A. E. Role of CodY in regulation of the Bacillus subtilis hut operon. J Bacteriol. 1996 Jul;178(13):3779–3784. doi: 10.1128/jb.178.13.3779-3784.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher S. H., Wray L. V., Jr Regulation of glutamine synthetase in Streptomyces coelicolor. J Bacteriol. 1989 May;171(5):2378–2383. doi: 10.1128/jb.171.5.2378-2383.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gardan R., Rapoport G., Débarbouillé M. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J Mol Biol. 1995 Jun 23;249(5):843–856. doi: 10.1006/jmbi.1995.0342. [DOI] [PubMed] [Google Scholar]
  17. Goss T. J., Bender R. A. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol. 1995 Jun;177(12):3546–3555. doi: 10.1128/jb.177.12.3546-3555.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haldenwang W. G. The sigma factors of Bacillus subtilis. Microbiol Rev. 1995 Mar;59(1):1–30. doi: 10.1128/mr.59.1.1-30.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Healy J., Weir J., Smith I., Losick R. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor sigma H in Bacillus subtilis. Mol Microbiol. 1991 Feb;5(2):477–487. doi: 10.1111/j.1365-2958.1991.tb02131.x. [DOI] [PubMed] [Google Scholar]
  20. Hicks K. A., Grossman A. D. Altering the level and regulation of the major sigma subunit of RNA polymerase affects gene expression and development in Bacillus subtilis. Mol Microbiol. 1996 Apr;20(1):201–212. doi: 10.1111/j.1365-2958.1996.tb02501.x. [DOI] [PubMed] [Google Scholar]
  21. Janssen D. B., Habets W. J., Marugg J. T., Van Der Drift C. Nitrogen control in Pseudomonas aeruginosa: mutants affected in the synthesis of glutamine synthetase, urease, and NADP-dependent glutamate dehydrogenase. J Bacteriol. 1982 Jul;151(1):22–28. doi: 10.1128/jb.151.1.22-28.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mobley H. L., Island M. D., Hausinger R. P. Molecular biology of microbial ureases. Microbiol Rev. 1995 Sep;59(3):451–480. doi: 10.1128/mr.59.3.451-480.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakano M. M., Yang F., Hardin P., Zuber P. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J Bacteriol. 1995 Feb;177(3):573–579. doi: 10.1128/jb.177.3.573-579.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perkins J. B., Youngman P. J. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Jan;83(1):140–144. doi: 10.1073/pnas.83.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schreier H. J., Brown S. W., Hirschi K. D., Nomellini J. F., Sonenshein A. L. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J Mol Biol. 1989 Nov 5;210(1):51–63. doi: 10.1016/0022-2836(89)90290-8. [DOI] [PubMed] [Google Scholar]
  27. Schreier H. J., Rostkowski C. A., Nomellini J. F., Hirschi K. D. Identification of DNA sequences involved in regulating Bacillus subtilis glnRA expression by the nitrogen source. J Mol Biol. 1991 Jul 20;220(2):241–253. doi: 10.1016/0022-2836(91)90010-4. [DOI] [PubMed] [Google Scholar]
  28. Serror P., Sonenshein A. L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol. 1996 Oct;178(20):5910–5915. doi: 10.1128/jb.178.20.5910-5915.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Serror P., Sonenshein A. L. Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol. 1996 May;20(4):843–852. doi: 10.1111/j.1365-2958.1996.tb02522.x. [DOI] [PubMed] [Google Scholar]
  30. Shimotsu H., Henner D. J. Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene. 1986;43(1-2):85–94. doi: 10.1016/0378-1119(86)90011-9. [DOI] [PubMed] [Google Scholar]
  31. Slack F. J., Mueller J. P., Strauch M. A., Mathiopoulos C., Sonenshein A. L. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol Microbiol. 1991 Aug;5(8):1915–1925. doi: 10.1111/j.1365-2958.1991.tb00815.x. [DOI] [PubMed] [Google Scholar]
  32. Slack F. J., Serror P., Joyce E., Sonenshein A. L. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol. 1995 Feb;15(4):689–702. doi: 10.1111/j.1365-2958.1995.tb02378.x. [DOI] [PubMed] [Google Scholar]
  33. Sonenshein A. L., Cami B., Brevet J., Cote R. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties. J Bacteriol. 1974 Oct;120(1):253–265. doi: 10.1128/jb.120.1.253-265.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trieu-Cuot P., Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene. 1983 Sep;23(3):331–341. doi: 10.1016/0378-1119(83)90022-7. [DOI] [PubMed] [Google Scholar]
  35. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weir J., Predich M., Dubnau E., Nair G., Smith I. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J Bacteriol. 1991 Jan;173(2):521–529. doi: 10.1128/jb.173.2.521-529.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wray L. V., Jr, Ferson A. E., Rohrer K., Fisher S. H. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8841–8845. doi: 10.1073/pnas.93.17.8841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wray L. V., Jr, Pettengill F. K., Fisher S. H. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol. 1994 Apr;176(7):1894–1902. doi: 10.1128/jb.176.7.1894-1902.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Koning-Ward T. F., Robins-Browne R. M. A novel mechanism of urease regulation in Yersinia enterocolitica. FEMS Microbiol Lett. 1997 Feb 15;147(2):221–226. doi: 10.1111/j.1574-6968.1997.tb10245.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES