Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5511–5515. doi: 10.1128/jb.179.17.5511-5515.1997

Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2).

A Hayes 1, G Hobbs 1, C P Smith 1, S G Oliver 1, P R Butler 1
PMCID: PMC179423  PMID: 9287007

Abstract

Methylenomycin production by Streptomyces coelicolor A3(2) may be triggered by either of two environmental signals: alanine growth-rate-limiting conditions and/or an acidic pH shock. The production of this SCP1-encoded antibiotic was studied by using batch and chemostat cultures. Batch cultures indicated a role for both nutritional status and culture pH in its regulation. Steady-state methylenomycin production and transcription of an mmy gene under alanine but not glucose growth-rate-limiting conditions was demonstrated in chemostat culture. Transient mmy expression and methylenomycin production occurred following an acidic pH shock. This stimulation of methylenomycin production occurred independently of the nutritional status of the growth environment. Antibiotic production was partially suppressed under alanine compared with glucose growth-rate-limiting conditions following the acidic pH shock. A low specific growth rate was a prerequisite for both steady-state and transient production of methylenomycin.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatnagar R. K., Doull J. L., Vining L. C. Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae: studies in batch and continuous cultures. Can J Microbiol. 1988 Nov;34(11):1217–1223. doi: 10.1139/m88-214. [DOI] [PubMed] [Google Scholar]
  2. Bibb M. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology. 1996 Jun;142(Pt 6):1335–1344. doi: 10.1099/13500872-142-6-1335. [DOI] [PubMed] [Google Scholar]
  3. Chater K. F., Bruton C. J. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J. 1985 Jul;4(7):1893–1897. doi: 10.1002/j.1460-2075.1985.tb03866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Espeso E. A., Tilburn J., Arst H. N., Jr, Peñalva M. A. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993 Oct;12(10):3947–3956. doi: 10.1002/j.1460-2075.1993.tb06072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster J. W. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. doi: 10.1128/jb.173.21.6896-6902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HOPWOOD D. A. Linkage and the mechanism of recombination in Streptomyces coelicolor. Ann N Y Acad Sci. 1959 Sep 30;81:887–898. doi: 10.1111/j.1749-6632.1959.tb49374.x. [DOI] [PubMed] [Google Scholar]
  7. Hege-Treskatis D., King R., Wolf H., Gilles E. D. Nutritional control of nikkomycin and juglomycin production by Streptomyces tendae in continuous culture. Appl Microbiol Biotechnol. 1992 Jan;36(4):440–445. doi: 10.1007/BF00170179. [DOI] [PubMed] [Google Scholar]
  8. Hobbs G., Obanye A. I., Petty J., Mason J. C., Barratt E., Gardner D. C., Flett F., Smith C. P., Broda P., Oliver S. G. An integrated approach to studying regulation of production of the antibiotic methylenomycin by Streptomyces coelicolor A3(2). J Bacteriol. 1992 Mar;174(5):1487–1494. doi: 10.1128/jb.174.5.1487-1494.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hood D. W., Heidstra R., Swoboda U. K., Hodgson D. A. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism--a review. Gene. 1992 Jun 15;115(1-2):5–12. doi: 10.1016/0378-1119(92)90533-u. [DOI] [PubMed] [Google Scholar]
  10. James P. D., Edwards C., Dawson M. The effects of temperature, pH and growth rate on secondary metabolism in Streptomyces thermoviolaceus grown in a chemostat. J Gen Microbiol. 1991 Jul;137(7):1715–1720. doi: 10.1099/00221287-137-7-1715. [DOI] [PubMed] [Google Scholar]
  11. Kinashi H., Shimaji M., Sakai A. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. 1987 Jul 30-Aug 5Nature. 328(6129):454–456. doi: 10.1038/328454a0. [DOI] [PubMed] [Google Scholar]
  12. Lee I. S., Lin J., Hall H. K., Bearson B., Foster J. W. The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol. 1995 Jul;17(1):155–167. doi: 10.1111/j.1365-2958.1995.mmi_17010155.x. [DOI] [PubMed] [Google Scholar]
  13. Lee I. S., Slonczewski J. L., Foster J. W. A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium. J Bacteriol. 1994 Mar;176(5):1422–1426. doi: 10.1128/jb.176.5.1422-1426.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin J. F., Demain A. L. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. doi: 10.1128/mr.44.2.230-251.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDermott J. F., Lethbridge G., Bushell M. E. Estimation of the kinetic constants and elucidation of trends in growth and erythromycin production in batch and continuous cultures of Saccharopolyspora erythraea using curve-fitting techniques. Enzyme Microb Technol. 1993 Aug;15(8):657–663. doi: 10.1016/0141-0229(93)90065-a. [DOI] [PubMed] [Google Scholar]
  16. Möhrle V., Roos U., Bormann C. Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tü901. Mol Microbiol. 1995 Feb;15(3):561–571. doi: 10.1111/j.1365-2958.1995.tb02269.x. [DOI] [PubMed] [Google Scholar]
  17. Olson E. R. Influence of pH on bacterial gene expression. Mol Microbiol. 1993 Apr;8(1):5–14. doi: 10.1111/j.1365-2958.1993.tb01198.x. [DOI] [PubMed] [Google Scholar]
  18. Park Y. K., Bearson B., Bang S. H., Bang I. S., Foster J. W. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol. 1996 May;20(3):605–611. doi: 10.1046/j.1365-2958.1996.5441070.x. [DOI] [PubMed] [Google Scholar]
  19. Reza Fazeli M., Cove J. H., Baumberg S. Physiological factors affecting streptomycin production by Streptomyces griseus ATCC 12475 in batch and continuous culture. FEMS Microbiol Lett. 1995 Feb 1;126(1):55–61. doi: 10.1111/j.1574-6968.1995.tb07390.x. [DOI] [PubMed] [Google Scholar]
  20. Shah A. J., Tilburn J., Adlard M. W., Arst H. N., Jr pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):209–212. doi: 10.1016/0378-1097(91)90553-m. [DOI] [PubMed] [Google Scholar]
  21. Wright L. F., Hopwood D. A. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol. 1976 Jul;95(1):96–106. doi: 10.1099/00221287-95-1-96. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES