Abstract
The sdh operon of Sulfolobus acidocaldarius DSM 639 is composed of four genes coding for the 63.1-kDa flavoprotein (SdhA), the 36.5-kDa iron-sulfur protein (SdhB), and the 32.1-kDa SdhC and 14.1-kDa SdhD subunits. The four structural genes of the sdhABCD operon are transcribed into one polycistronic mRNA of 4.2 kb, and the transcription start was determined by the primer extension method to correspond with the first base of the ATG start codon of the sdhA gene. The S. acidocaldarius SdhA and SdhB subunits show characteristic sequence similarities to the succinate dehydrogenases and fumarate reductases of other organisms, while the SdhC and SdhD subunits, thought to form the membrane-anchoring domain, lack typical transmembrane alpha-helical regions present in all other succinate:quinone reductases (SQRs) and quinol:ifumarate reductases (QFRs) so far examined. Moreover, the SdhC subunit reveals remarkable 30% sequence similarity to the heterodisulfide reductase B subunit of Methanobacterium thermoautotrophicum and Methanococcus jannaschii, containing all 10 conserved cysteine residues. Electron paramagnetic resonance (EPR) spectroscopic studies of the purified enzyme as well as of membranes revealed the presence of typical S1 [2Fe2S] and S2 [4Fe4S] clusters, congruent with the deduced amino acid sequences. In contrast, EPR signals for a typical S3 [3Fe4S] cluster were not detected. However, EPR data together with sequence information implicate the existence of a second [4Fe4S] cluster in S. acidocaldarius rather than a typical [3Fe4S] cluster. These results and the fact that the S. acidocaldarius succinate dehydrogenase complex reveals only poor activity with caldariella quinone clearly suggest a unique structure for the SQR of S. acidocaldarius, possibly involving an electron transport pathway from the enzyme complex into the respiratory chain different from those for known SQRs and QFRs.
Full Text
The Full Text of this article is available as a PDF (434.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AEvarsson A., Hederstedt L. Ligands to the 2Fe iron-sulfur center in succinate dehydrogenase. FEBS Lett. 1988 May 23;232(2):298–302. doi: 10.1016/0014-5793(88)80757-9. [DOI] [PubMed] [Google Scholar]
- Anemüller S., Hettmann T., Moll R., Teixeira M., Schäfer G. EPR characterization of an archaeal succinate dehydrogenase in the membrane-bound state. Eur J Biochem. 1995 Sep 1;232(2):563–568. [PubMed] [Google Scholar]
- Bach M., Reiländer H., Gärtner P., Lottspeich F., Michel H. Nucleotide sequence of a putative succinate dehydrogenase operon in Thermoplasma acidophilum. Biochim Biophys Acta. 1993 Jul 18;1174(1):103–107. doi: 10.1016/0167-4781(93)90101-i. [DOI] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobik T. A., Wolfe R. S. An unusual thiol-driven fumarate reductase in Methanobacterium with the production of the heterodisulfide of coenzyme M and N-(7-mercaptoheptanoyl)threonine-O3-phosphate. J Biol Chem. 1989 Nov 5;264(31):18714–18718. [PubMed] [Google Scholar]
- Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
- Cecchini G., Sices H., Schröder I., Gunsalus R. P. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J Bacteriol. 1995 Aug;177(16):4587–4592. doi: 10.1128/jb.177.16.4587-4592.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem. 1992 Feb 14;201(1):134–139. doi: 10.1016/0003-2697(92)90185-a. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cole S. T., Condon C., Lemire B. D., Weiner J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. doi: 10.1016/0304-4173(85)90008-4. [DOI] [PubMed] [Google Scholar]
- Dunn R., McCoy J., Simsek M., Majumdar A., Chang S. H., Rajbhandary U. L., Khorana H. G. The bacteriorhodopsin gene. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6744–6748. doi: 10.1073/pnas.78.11.6744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
- Gradin C. H., Hederstedt L., Baltscheffsky H. Soluble succinate dehydrogenase from the halophilic archaebacterium, Halobacterium halobium. Arch Biochem Biophys. 1985 May 15;239(1):200–205. doi: 10.1016/0003-9861(85)90827-6. [DOI] [PubMed] [Google Scholar]
- Hedderich R., Koch J., Linder D., Thauer R. K. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem. 1994 Oct 1;225(1):253–261. doi: 10.1111/j.1432-1033.1994.00253.x. [DOI] [PubMed] [Google Scholar]
- Hederstedt L., Hedén L. O. New properties of Bacillus subtilis succinate dehydrogenase altered at the active site. The apparent active site thiol of succinate oxidoreductases is dispensable for succinate oxidation. Biochem J. 1989 Jun 1;260(2):491–497. doi: 10.1042/bj2600491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hägerhäll C., Aasa R., von Wachenfeldt C., Hederstedt L. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry. 1992 Aug 18;31(32):7411–7421. doi: 10.1021/bi00147a028. [DOI] [PubMed] [Google Scholar]
- Hägerhäll C., Hederstedt L. A structural model for the membrane-integral domain of succinate: quinone oxidoreductases. FEBS Lett. 1996 Jun 24;389(1):25–31. doi: 10.1016/0014-5793(96)00529-7. [DOI] [PubMed] [Google Scholar]
- Hägerhäll C., Sled V., Hederstedt L., Ohnishi T. The trinuclear iron-sulfur cluster S3 in Bacillus subtilis succinate:menaquinone reductase; effects of a mutation in the putative cluster ligation motif on enzyme activity and EPR properties. Biochim Biophys Acta. 1995 May 10;1229(3):356–362. doi: 10.1016/0005-2728(95)00023-c. [DOI] [PubMed] [Google Scholar]
- Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta. 1997 Jun 13;1320(2):107–141. doi: 10.1016/s0005-2728(97)00019-4. [DOI] [PubMed] [Google Scholar]
- Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. [DOI] [PubMed] [Google Scholar]
- Iwasaki T., Wakagi T., Oshima T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. III. The archaeal novel respiratory complex II (succinate:caldariellaquinone oxidoreductase complex) inherently lacks heme group. J Biol Chem. 1995 Dec 29;270(52):30902–30908. doi: 10.1074/jbc.270.52.30902. [DOI] [PubMed] [Google Scholar]
- Johnson M. K., Kowal A. T., Morningstar J. E., Oliver M. E., Whittaker K., Gunsalus R. P., Ackrell B. A., Cecchini G. Subunit location of the iron-sulfur clusters in fumarate reductase from Escherichia coli. J Biol Chem. 1988 Oct 15;263(29):14732–14738. [PubMed] [Google Scholar]
- Keeling P. J., Doolittle W. F. Archaea: narrowing the gap between prokaryotes and eukaryotes. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5761–5764. doi: 10.1073/pnas.92.13.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenney W. C., Kröger A. The covalently bound flavin of Vibrio succinogenes succinate dehydrogenase. FEBS Lett. 1977 Feb 1;73(2):239–243. doi: 10.1016/0014-5793(77)80989-7. [DOI] [PubMed] [Google Scholar]
- Kletzin A. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. Nucleic Acids Res. 1992 Oct 25;20(20):5389–5396. doi: 10.1093/nar/20.20.5389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kletzin A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. J Bacteriol. 1992 Sep;174(18):5854–5859. doi: 10.1128/jb.174.18.5854-5859.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Körtner C., Lauterbach F., Tripier D., Unden G., Kröger A. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol Microbiol. 1990 May;4(5):855–860. doi: 10.1111/j.1365-2958.1990.tb00657.x. [DOI] [PubMed] [Google Scholar]
- Künkel A., Vaupel M., Heim S., Thauer R. K., Hedderich R. Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur J Biochem. 1997 Feb 15;244(1):226–234. doi: 10.1111/j.1432-1033.1997.00226.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lauterbach F., Körtner C., Albracht S. P., Unden G., Kröger A. The fumarate reductase operon of Wolinella succinogenes. Sequence and expression of the frdA and frdB genes. Arch Microbiol. 1990;154(4):386–393. doi: 10.1007/BF00276536. [DOI] [PubMed] [Google Scholar]
- Maguire J. J., Hederstedt L. EPR characterization of soluble fragments of succinate dehydrogenase from mutant strains of Bacillus subtilis. FEBS Lett. 1989 Oct 9;256(1-2):195–199. doi: 10.1016/0014-5793(89)81747-8. [DOI] [PubMed] [Google Scholar]
- Manodori A., Cecchini G., Schröder I., Gunsalus R. P., Werth M. T., Johnson M. K. [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry. 1992 Mar 17;31(10):2703–2712. doi: 10.1021/bi00125a010. [DOI] [PubMed] [Google Scholar]
- Moll R., Schäfer G. Purification and characterisation of an archaebacterial succinate dehydrogenase complex from the plasma membrane of the thermoacidophile Sulfolobus acidocaldarius. Eur J Biochem. 1991 Nov 1;201(3):593–600. doi: 10.1111/j.1432-1033.1991.tb16319.x. [DOI] [PubMed] [Google Scholar]
- Morningstar J. E., Johnson M. K., Cecchini G., Ackrell B. A., Kearney E. B. The high potential iron-sulfur center in Escherichia coli fumarate reductase is a three-iron cluster. J Biol Chem. 1985 Nov 5;260(25):13631–13638. [PubMed] [Google Scholar]
- Morris A. A., Farnsworth L., Ackrell B. A., Turnbull D. M., Birch-Machin M. A. The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994 Mar 29;1185(1):125–128. doi: 10.1016/0005-2728(94)90203-8. [DOI] [PubMed] [Google Scholar]
- Nakamura K., Yamaki M., Sarada M., Nakayama S., Vibat C. R., Gennis R. B., Nakayashiki T., Inokuchi H., Kojima S., Kita K. Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli. J Biol Chem. 1996 Jan 5;271(1):521–527. doi: 10.1074/jbc.271.1.521. [DOI] [PubMed] [Google Scholar]
- Peterson J., Vibat C., Gennis R. B. Identification of the axial heme ligands of cytochrome b556 in succinate: ubiquinone oxidoreductase from Escherichia coli. FEBS Lett. 1994 Nov 28;355(2):155–156. doi: 10.1016/0014-5793(94)01189-3. [DOI] [PubMed] [Google Scholar]
- Purschke W. G., Schäfer G. An alternative to digoxigenin-labeled primers for manual nonradioactive sequencing allows reading of more than 700 bases. Anal Biochem. 1996 Jun 15;238(1):98–100. doi: 10.1006/abio.1996.0259. [DOI] [PubMed] [Google Scholar]
- Reiter W. D., Palm P., Zillig W. Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res. 1988 Mar 25;16(6):2445–2459. doi: 10.1093/nar/16.6.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice D. W., Schulz G. E., Guest J. R. Structural relationship between glutathione reductase and lipoamide dehydrogenase. J Mol Biol. 1984 Apr 15;174(3):483–496. doi: 10.1016/0022-2836(84)90332-2. [DOI] [PubMed] [Google Scholar]
- Schmitz G. G., Walter T., Seibl R., Kessler C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal Biochem. 1991 Jan;192(1):222–231. doi: 10.1016/0003-2697(91)90212-c. [DOI] [PubMed] [Google Scholar]
- Schröder I., Gunsalus R. P., Ackrell B. A., Cochran B., Cecchini G. Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J Biol Chem. 1991 Jul 25;266(21):13572–13579. [PubMed] [Google Scholar]
- Schäfer G. Bioenergetics of the archaebacterium Sulfolobus. Biochim Biophys Acta. 1996 Dec 18;1277(3):163–200. doi: 10.1016/s0005-2728(96)00104-1. [DOI] [PubMed] [Google Scholar]
- Schäfer G., Purschke W. G., Gleissner M., Schmidt C. L. Respiratory chains of archaea and extremophiles. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):16–20. doi: 10.1016/0005-2728(96)00043-6. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Setzke E., Hedderich R., Heiden S., Thauer R. K. H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. Eur J Biochem. 1994 Feb 15;220(1):139–148. doi: 10.1111/j.1432-1033.1994.tb18608.x. [DOI] [PubMed] [Google Scholar]
- Smirnova I. A., Hägerhäll C., Konstantinov A. A., Hederstedt L. HOQNO interaction with cytochrome b in succinate:menaquinone oxidoreductase from Bacillus subtilis. FEBS Lett. 1995 Feb 6;359(1):23–26. doi: 10.1016/0014-5793(94)01442-4. [DOI] [PubMed] [Google Scholar]
- Thomm M., Wich G. An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes. Nucleic Acids Res. 1988 Jan 11;16(1):151–163. doi: 10.1093/nar/16.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vik S. B., Hatefi Y. Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6749–6753. doi: 10.1073/pnas.78.11.6749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinogradov A. D., Gavrikova E. V., Zuevsky V. V. Reactivity of the sulfhydryl groups of soluble succinate dehydrogenase. Eur J Biochem. 1976 Apr 1;63(2):365–371. doi: 10.1111/j.1432-1033.1976.tb10238.x. [DOI] [PubMed] [Google Scholar]
- Walker W. H., Singer T. P. Identification of the covalently bound flavin of succinate dehydrogenase as 8-alpha-(histidyl) flavin adenine dinucleotide. J Biol Chem. 1970 Aug 25;245(16):4224–4225. [PubMed] [Google Scholar]
- Weiner J. H., Dickie P. Fumarate reductase of Escherichia coli. Elucidation of the covalent-flavin component. J Biol Chem. 1979 Sep 10;254(17):8590–8593. [PubMed] [Google Scholar]
- Werth M. T., Cecchini G., Manodori A., Ackrell B. A., Schröder I., Gunsalus R. P., Johnson M. K. Site-directed mutagenesis of conserved cysteine residues in Escherichia coli fumarate reductase: modification of the spectroscopic and electrochemical properties of the [2Fe-2S] cluster. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8965–8969. doi: 10.1073/pnas.87.22.8965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westenberg D. J., Gunsalus R. P., Ackrell B. A., Cecchini G. Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli. J Biol Chem. 1990 Nov 15;265(32):19560–19567. [PubMed] [Google Scholar]
- Westenberg D. J., Gunsalus R. P., Ackrell B. A., Sices H., Cecchini G. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones. J Biol Chem. 1993 Jan 15;268(2):815–822. [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]