Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5618–5620. doi: 10.1128/jb.179.17.5618-5620.1997

Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide.

A V Kwiatkowski 1, W P Laratta 1, A Toffanin 1, J P Shapleigh 1
PMCID: PMC179441  PMID: 9287025

Abstract

Rhodobacter sphaeroides 2.4.1, which is incapable of denitrification, has been found to carry nnrR, the nor operon, and nnrS, which are utilized for denitrification in R. sphaeroides 2.4.3. The gene encoding nitrite reductase was not found in 2.4.1. Expression of beta-galactosidase activity from a norB-lacZ fusion was activated when cells of 2.4.1 were incubated with NO-producing bacteria. This result indicates that the products of nnrR and the genes flanking it are utilized when 2.4.1 is growing in an environment where denitrification occurs.

Full Text

The Full Text of this article is available as a PDF (143.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartnikas T. B., Tosques I. E., Laratta W. P., Shi J., Shapleigh J. P. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1997 Jun;179(11):3534–3540. doi: 10.1128/jb.179.11.3534-3540.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996 Dec;60(4):609–640. doi: 10.1128/mr.60.4.609-640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
  4. Kokotek W., Lotz W. Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene. 1989 Dec 14;84(2):467–471. doi: 10.1016/0378-1119(89)90522-2. [DOI] [PubMed] [Google Scholar]
  5. Kwiatkowski A. V., Shapleigh J. P. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem. 1996 Oct 4;271(40):24382–24388. doi: 10.1074/jbc.271.40.24382. [DOI] [PubMed] [Google Scholar]
  6. Toffanin A., Wu Q., Maskus M., Caselia S., Abruña H. D., Shapleigh J. P. Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium "hedysari" strain HCNT1. Appl Environ Microbiol. 1996 Nov;62(11):4019–4025. doi: 10.1128/aem.62.11.4019-4025.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Tosques I. E., Kwiatkowski A. V., Shi J., Shapleigh J. P. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1997 Feb;179(4):1090–1095. doi: 10.1128/jb.179.4.1090-1095.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tosques I. E., Shi J., Shapleigh J. P. Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1996 Aug;178(16):4958–4964. doi: 10.1128/jb.178.16.4958-4964.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zeilstra-Ryalls J. H., Kaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol. 1995 Nov;177(22):6422–6431. doi: 10.1128/jb.177.22.6422-6431.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES