Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(17):5636–5638. doi: 10.1128/jb.179.17.5636-5638.1997

Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR.

R A Daniel 1, J Haiech 1, F Denizot 1, J Errington 1
PMCID: PMC179446  PMID: 9287030

Abstract

We have isolated transposon insertions in the lacA gene encoding an endogenous beta-galactosidase of Bacillus subtilis. Upstream of the putative operon containing lacA is a negative regulator, lacR, which encodes a product related to a family of regulators that includes the lactose repressor, lacI, of Escherichia coli. New strains with insertions in the lacA gene should be of use in studies using lacZ fusions in B. subtilis.

Full Text

The Full Text of this article is available as a PDF (169.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Benson A. K., Haldenwang W. G. Regulation of sigma B levels and activity in Bacillus subtilis. J Bacteriol. 1993 Apr;175(8):2347–2356. doi: 10.1128/jb.175.8.2347-2356.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daniel R. A., Williams A. M., Errington J. A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J Bacteriol. 1996 Apr;178(8):2343–2350. doi: 10.1128/jb.178.8.2343-2350.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubnau E. J., Cabane K., Smith I. Regulation of spo0H, an early sporulation gene in bacilli. J Bacteriol. 1987 Mar;169(3):1182–1191. doi: 10.1128/jb.169.3.1182-1191.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Errington J. Efficient Bacillus subtilis cloning system using bacteriophage vector phi 105J9. J Gen Microbiol. 1984 Oct;130(10):2615–2628. doi: 10.1099/00221287-130-10-2615. [DOI] [PubMed] [Google Scholar]
  6. Errington J., Mandelstam J. Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIA in spo mutants of Bacillus subtilis. J Gen Microbiol. 1986 Nov;132(11):2967–2976. doi: 10.1099/00221287-132-11-2967. [DOI] [PubMed] [Google Scholar]
  7. Errington J., Vogt C. H. Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis beta-galactosidase and its regulator. J Bacteriol. 1990 Jan;172(1):488–490. doi: 10.1128/jb.172.1.488-490.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fabret C., Quentin Y., Chapal N., Guiseppi A., Haiech J., Denizot F. Integrated mapping and sequencing of a 115 kb DNA fragment from Bacillus subtilis: sequence analysis of a 21 kb segment containing the sigL locus. Microbiology. 1996 Nov;142(Pt 11):3089–3096. doi: 10.1099/13500872-142-11-3089. [DOI] [PubMed] [Google Scholar]
  9. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  10. Itaya M. Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. Biosci Biotechnol Biochem. 1992 Apr;56(4):685–686. doi: 10.1271/bbb.56.685. [DOI] [PubMed] [Google Scholar]
  11. Itaya M., Kondo K., Tanaka T. A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome. Nucleic Acids Res. 1989 Jun 12;17(11):4410–4410. doi: 10.1093/nar/17.11.4410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moszer I., Kunst F., Danchin A. The European Bacillus subtilis genome sequencing project: current status and accessibility of the data from a new World Wide Web site. Microbiology. 1996 Nov;142(Pt 11):2987–2991. doi: 10.1099/13500872-142-11-2987. [DOI] [PubMed] [Google Scholar]
  13. Partridge S. R., Errington J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):945–955. doi: 10.1111/j.1365-2958.1993.tb01639.x. [DOI] [PubMed] [Google Scholar]
  14. Petit M. A., Bruand C., Jannière L., Ehrlich S. D. Tn10-derived transposons active in Bacillus subtilis. J Bacteriol. 1990 Dec;172(12):6736–6740. doi: 10.1128/jb.172.12.6736-6740.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steinmetz M., Richter R. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene. 1994 May 3;142(1):79–83. doi: 10.1016/0378-1119(94)90358-1. [DOI] [PubMed] [Google Scholar]
  16. Stevens C. M., Daniel R., Illing N., Errington J. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol. 1992 Jan;174(2):586–594. doi: 10.1128/jb.174.2.586-594.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zagorec M., Steinmetz M. Construction of a derivative of Tn917 containing an outward-directed promoter and its use in Bacillus subtilis. J Gen Microbiol. 1991 Jan;137(1):107–112. doi: 10.1099/00221287-137-1-107. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES