Abstract
Previous studies have shown that the pyruvate-ferredoxin oxidoreductase (POR) of the sulfate-reducing bacterium Desulfovibrio africanus is a homodimer that contains one thiamine pyrophosphate and three [4Fe-4S]2+/1+ centers/subunit. Interestingly, the enzyme isolated from a strictly anaerobic bacterium is highly stable in the presence of oxygen, in contrast to the other PORs characterized in anaerobic organisms (L. Pieulle, B. Guigliarelli, M. Asso, F. Dole, A. Bernadac, and E. C. Hatchikian, Biochim. Biophys. Acta 1250:49-59, 1995). We report here the determination of the nucleotide sequence of the por gene encoding the D. africanus POR. The amino acid sequence deduced from this nucleotide sequence corresponds to the first primary structure of a homodimeric POR from strictly anaerobic bacteria. The subunit of the D. africanus POR contains two ferredoxin-type [4Fe-4S] cluster binding motifs (CX2CX2CX3CP) and four additional highly conserved cysteines belonging to a nontypical motif. These 12 cysteine residues may coordinate the three Fe-S centers present in D. africanus POR. The thiamine pyrophosphate binding domain is located in the C-terminal part of the protein close to the four conserved cysteine residues. The D. africanus enzyme sequence appears homologous to the other POR sequences. However, the enzyme differs from all other PORs by a C-terminal extension of about 60 residues of its polypeptide chain. The two cysteine residues located in this additional region may be involved in the formation of a disulfide bridge associated with the activation process of the catalytic activity. The por gene has been expressed, for the first time, in anaerobically grown Escherichia coli behind the isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, resulting in the production of POR in its active form. The recombinant enzyme is stable toward oxygen during several days, and initial characterization of the recombinant POR showed that its activity increased in the presence of dithioerythritol. These properties indicate that the recombinant POR behaves like the native D. africanus enzyme. The study of carboxy-terminal deletion mutants strongly suggests that deletions in the C-terminal region of D. africanus enzyme can have dramatic effects on the stability of the enzyme toward oxygen.
Full Text
The Full Text of this article is available as a PDF (713.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold W., Rump A., Klipp W., Priefer U. B., Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol. 1988 Oct 5;203(3):715–738. doi: 10.1016/0022-2836(88)90205-7. [DOI] [PubMed] [Google Scholar]
- Blamey J. M., Adams M. W. Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry. 1994 Feb 1;33(4):1000–1007. doi: 10.1021/bi00170a019. [DOI] [PubMed] [Google Scholar]
- Blamey J. M., Adams M. W. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta. 1993 Jan 15;1161(1):19–27. doi: 10.1016/0167-4838(93)90190-3. [DOI] [PubMed] [Google Scholar]
- Bock A. K., Kunow J., Glasemacher J., Schönheit P. Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). Eur J Biochem. 1996 Apr 1;237(1):35–44. doi: 10.1111/j.1432-1033.1996.0035n.x. [DOI] [PubMed] [Google Scholar]
- Brostedt E., Nordlund S. Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J. 1991 Oct 1;279(Pt 1):155–158. doi: 10.1042/bj2790155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell L. L., Kasprzycki M. A., Postgate J. R. Desulfovibrio Africans sp. n., a new dissimilatory sulfate-reducing bacterium. J Bacteriol. 1966 Oct;92(4):1122–1127. doi: 10.1128/jb.92.4.1122-1127.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen B., Menon N. K., Dervertarnian L., Moura J. J., Przybyla A. E. Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli. FEBS Lett. 1994 Sep 12;351(3):401–404. doi: 10.1016/0014-5793(94)00891-4. [DOI] [PubMed] [Google Scholar]
- Docampo R., Moreno S. N., Mason R. P. Free radical intermediates in the reaction of pyruvate:ferredoxin oxidoreductase in Tritrichomonas foetus hydrogenosomes. J Biol Chem. 1987 Sep 15;262(26):12417–12420. [PubMed] [Google Scholar]
- Flint D. H., Tuminello J. F., Emptage M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem. 1993 Oct 25;268(30):22369–22376. [PubMed] [Google Scholar]
- Freer S. T., Alden R. A., Carter C. W., Jr, Kraut J. Crystallographic structure refinement of Chromatium high potential iron protein at two Angstroms resolution. J Biol Chem. 1975 Jan 10;250(1):46–54. [PubMed] [Google Scholar]
- Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
- Hatchikian E. C., Forget N., Fernandez V. M., Williams R., Cammack R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur J Biochem. 1992 Oct 1;209(1):357–365. doi: 10.1111/j.1432-1033.1992.tb17297.x. [DOI] [PubMed] [Google Scholar]
- Hatchikian E. C., Le Gall J. Etude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfato-réductrices. II. Transport des électrons; accepteurs finaux. Ann Inst Pasteur (Paris) 1970 Mar;118(3):288–301. [PubMed] [Google Scholar]
- Hawkins C. F., Borges A., Perham R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989 Sep 11;255(1):77–82. doi: 10.1016/0014-5793(89)81064-6. [DOI] [PubMed] [Google Scholar]
- Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
- Hrdý I., Müller M. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol. 1995 Sep;41(3):388–396. [PubMed] [Google Scholar]
- Hughes N. J., Chalk P. A., Clayton C. L., Kelly D. J. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate:flavodoxin oxidoreductase from Helicobacter pylori. J Bacteriol. 1995 Jul;177(14):3953–3959. doi: 10.1128/jb.177.14.3953-3959.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerscher L., Oesterhelt D. Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur J Biochem. 1981 Jun 1;116(3):587–594. doi: 10.1111/j.1432-1033.1981.tb05376.x. [DOI] [PubMed] [Google Scholar]
- Kletzin A., Adams M. W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 1996 Jan;178(1):248–257. doi: 10.1128/jb.178.1.248-257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunow J., Linder D., Thauer R. K. Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments. Arch Microbiol. 1995 Jan;163(1):21–28. doi: 10.1007/BF00262199. [DOI] [PubMed] [Google Scholar]
- LEGALL J., MAZZA G., DRAGONI N. LE CYTOCHROME C3 DE DESULFOVIBRIO GIGAS. Biochim Biophys Acta. 1965 May 18;99:385–387. [PubMed] [Google Scholar]
- Liochev S. I., Fridovich I. The role of O2.- in the production of HO.: in vitro and in vivo. Free Radic Biol Med. 1994 Jan;16(1):29–33. doi: 10.1016/0891-5849(94)90239-9. [DOI] [PubMed] [Google Scholar]
- Lupton F. S., Conrad R., Zeikus J. G. Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol. 1984 Sep;159(3):843–849. doi: 10.1128/jb.159.3.843-849.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meinecke B., Bertram J., Gottschalk G. Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch Microbiol. 1989;152(3):244–250. doi: 10.1007/BF00409658. [DOI] [PubMed] [Google Scholar]
- Meyer J., Gagnon J. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry. 1991 Oct 8;30(40):9697–9704. doi: 10.1021/bi00104a018. [DOI] [PubMed] [Google Scholar]
- Moulis J. M., Davasse V., Meyer J., Gaillard J. Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with the Clostridium pasteurianum enzyme. FEBS Lett. 1996 Feb 19;380(3):287–290. doi: 10.1016/0014-5793(96)00062-2. [DOI] [PubMed] [Google Scholar]
- Odom J. M., Peck H. D., Jr Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol. 1981 Jul;147(1):161–169. doi: 10.1128/jb.147.1.161-169.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata M., Yagi T. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F. J Biochem. 1986 Aug;100(2):311–318. doi: 10.1093/oxfordjournals.jbchem.a121717. [DOI] [PubMed] [Google Scholar]
- Pieulle L., Guigliarelli B., Asso M., Dole F., Bernadac A., Hatchikian E. C. Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. Biochim Biophys Acta. 1995 Jul 3;1250(1):49–59. doi: 10.1016/0167-4838(95)00029-t. [DOI] [PubMed] [Google Scholar]
- Plaga W., Lottspeich F., Oesterhelt D. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. Eur J Biochem. 1992 Apr 1;205(1):391–397. doi: 10.1111/j.1432-1033.1992.tb16792.x. [DOI] [PubMed] [Google Scholar]
- Rouault T. A., Klausner R. D. Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci. 1996 May;21(5):174–177. [PubMed] [Google Scholar]
- Smith E. T., Blamey J. M., Adams M. W. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms. Biochemistry. 1994 Feb 1;33(4):1008–1016. doi: 10.1021/bi00170a020. [DOI] [PubMed] [Google Scholar]
- Tersteegen A., Linder D., Thauer R. K., Hedderich R. Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur J Biochem. 1997 Mar 15;244(3):862–868. doi: 10.1111/j.1432-1033.1997.00862.x. [DOI] [PubMed] [Google Scholar]
- Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
- Uyeda K., Rabinowitz J. C. Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. J Biol Chem. 1971 May 25;246(10):3111–3119. [PubMed] [Google Scholar]
- Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995 Feb 16;373(6515):580–587. doi: 10.1038/373580a0. [DOI] [PubMed] [Google Scholar]
- Wahl R. C., Orme-Johnson W. H. Clostridial pyruvate oxidoreductase and the pyruvate-oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes. J Biol Chem. 1987 Aug 5;262(22):10489–10496. [PubMed] [Google Scholar]
- Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
- Williams K., Lowe P. N., Leadlay P. F. Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem J. 1987 Sep 1;246(2):529–536. doi: 10.1042/bj2460529. [DOI] [PMC free article] [PubMed] [Google Scholar]