Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Sep;179(18):5971–5974. doi: 10.1128/jb.179.18.5971-5974.1997

SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.

D Avram 1, A T Bakalinsky 1
PMCID: PMC179495  PMID: 9294463

Abstract

The Saccharomyces cerevisiae SSU1 gene was isolated based on its ability to complement a mutation causing sensitivity to sulfite, a methionine intermediate. SSU1 encodes a deduced protein of 458 amino acids containing 9 or 10 membrane-spanning domains but has no significant similarity to other proteins in public databases. An Ssu1p-GEP fusion protein was localized to the plasma membrane. Multicopy suppression analysis, undertaken to explore relationships among genes previously implicated in sulfite metabolism, suggests a regulatory pathway in which SSU1 acts downstream of FZF1 and SSU3, which in turn act downstream of GRR1.

Full Text

The Full Text of this article is available as a PDF (147.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avram D., Bakalinsky A. T. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics. 1996 Oct;144(2):511–521. doi: 10.1093/genetics/144.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey R. B., Woodword A. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Mol Gen Genet. 1984;193(3):507–512. doi: 10.1007/BF00382091. [DOI] [PubMed] [Google Scholar]
  3. Blacketer M. J., Madaule P., Myers A. M. Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics. 1995 Aug;140(4):1259–1275. doi: 10.1093/genetics/140.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breitwieser W., Price C., Schuster T. Identification of a gene encoding a novel zinc finger protein in Saccharomyces cerevisiae. Yeast. 1993 May;9(5):551–556. doi: 10.1002/yea.320090512. [DOI] [PubMed] [Google Scholar]
  5. Casalone E., Colella C. M., Daly S., Fontana S., Torricelli I., Polsinelli M. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast. 1994 Aug;10(8):1101–1110. doi: 10.1002/yea.320100812. [DOI] [PubMed] [Google Scholar]
  6. Conklin D. S., Kung C., Culbertson M. R. The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Apr;13(4):2041–2049. doi: 10.1128/mcb.13.4.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fagan M. J., Saier M. H., Jr P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol. 1994 Jan;38(1):57–99. doi: 10.1007/BF00175496. [DOI] [PubMed] [Google Scholar]
  8. Gamo F. J., Lafuente M. J., Gancedo C. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J Bacteriol. 1994 Dec;176(24):7423–7429. doi: 10.1128/jb.176.24.7423-7429.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  10. Heim R., Cubitt A. B., Tsien R. Y. Improved green fluorescence. Nature. 1995 Feb 23;373(6516):663–664. doi: 10.1038/373663b0. [DOI] [PubMed] [Google Scholar]
  11. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  12. Kim Y. J., Francisco L., Chen G. C., Marcotte E., Chan C. S. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J Cell Biol. 1994 Dec;127(5):1381–1394. doi: 10.1083/jcb.127.5.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ozcan S., Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol. 1995 Mar;15(3):1564–1572. doi: 10.1128/mcb.15.3.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ozcan S., Schulte F., Freidel K., Weber A., Ciriacy M. Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae. Eur J Biochem. 1994 Sep 1;224(2):605–611. doi: 10.1111/j.1432-1033.1994.00605.x. [DOI] [PubMed] [Google Scholar]
  15. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  16. Sathe G. M., O'Brien S., McLaughlin M. M., Watson F., Livi G. P. Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucleic Acids Res. 1991 Sep 11;19(17):4775–4775. doi: 10.1093/nar/19.17.4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor S. L., Higley N. A., Bush R. K. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res. 1986;30:1–76. doi: 10.1016/s0065-2628(08)60347-x. [DOI] [PubMed] [Google Scholar]
  18. Vallier L. G., Carlson M. New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae. Genetics. 1991 Nov;129(3):675–684. doi: 10.1093/genetics/129.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vallier L. G., Coons D., Bisson L. F., Carlson M. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics. 1994 Apr;136(4):1279–1285. doi: 10.1093/genetics/136.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xu X., Wightman J. D., Geller B. L., Avram D., Bakalinsky A. T. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet. 1994 Jun;25(6):488–496. doi: 10.1007/BF00351667. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES