Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(19):5992–5998. doi: 10.1128/jb.179.19.5992-5998.1997

Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae.

K Okada 1, Y Kamiya 1, X Zhu 1, K Suzuki 1, K Tanaka 1, T Nakagawa 1, H Matsuda 1, M Kawamukai 1
PMCID: PMC179498  PMID: 9324242

Abstract

Different organisms produce different species of isoprenoid quinones, each with its own distinctive length. These differences in length are commonly exploited in microbial classification. The side chain length of quinone is determined by the nature of the polyprenyl diphosphate synthase that catalyzes the reaction. To determine if the side chain length of ubiquinone (UQ) has any distinct role to play in the metabolism of the cells in which it is found, we cloned the solanesyl diphosphate synthase gene (sdsA) from Rhodobacter capsulatus SB1003 and expressed it in Escherichia coli and Saccharomyces cerevisiae. Sequence analysis revealed that the sdsA gene encodes a 325-amino-acid protein which has similarity (27 to 40%) with other prenyl diphosphate synthases. Expression of the sdsA gene complemented a defect in the octaprenyl diphosphate synthase gene of E. coli and the nonrespiratory phenotype resulting from a defect in the hexaprenyl diphosphate synthase gene of S. cerevisiae. Both E. coli and S. cerevisiae expressing the sdsA gene mainly produced solanesyl diphosphate, which resulted in the synthesis of UQ-9 without any noticeable effect on the growth of the cells. Thus, it appears that UQ-9 can replace the function of UQ-8 in E. coli and UQ-6 in S. cerevisiae. Taken together with previous results, the results described here imply that the side chain length of UQ is not a critical factor for the survival of microorganisms.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai K., Fujisaki S., Nishimura Y., Nishino T., Okada K., Nakagawa T., Kawamukai M., Matsuda H. The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):340–345. doi: 10.1006/bbrc.1994.1933. [DOI] [PubMed] [Google Scholar]
  2. Ashby M. N., Edwards P. A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem. 1990 Aug 5;265(22):13157–13164. [PubMed] [Google Scholar]
  3. Collins M. D., Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981 Jun;45(2):316–354. doi: 10.1128/mr.45.2.316-354.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  5. Fujii H., Koyama T., Ogura K. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta. 1982 Sep 14;712(3):716–718. [PubMed] [Google Scholar]
  6. Grünler J., Ericsson J., Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta. 1994 Jun 2;1212(3):259–277. doi: 10.1016/0005-2760(94)90200-3. [DOI] [PubMed] [Google Scholar]
  7. Isegawa Y., Sheng J., Sokawa Y., Yamanishi K., Nakagomi O., Ueda S. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol Cell Probes. 1992 Dec;6(6):467–475. doi: 10.1016/0890-8508(92)90043-w. [DOI] [PubMed] [Google Scholar]
  8. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Joly A., Edwards P. A. Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem. 1993 Dec 25;268(36):26983–26989. [PubMed] [Google Scholar]
  10. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
  11. Koike-Takeshita A., Koyama T., Obata S., Ogura K. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis. J Biol Chem. 1995 Aug 4;270(31):18396–18400. doi: 10.1074/jbc.270.31.18396. [DOI] [PubMed] [Google Scholar]
  12. Koyama T., Obata S., Osabe M., Takeshita A., Yokoyama K., Uchida M., Nishino T., Ogura K. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determination, overproduction, and purification. J Biochem. 1993 Mar;113(3):355–363. doi: 10.1093/oxfordjournals.jbchem.a124051. [DOI] [PubMed] [Google Scholar]
  13. Ohnuma S. i., Narita K., Nakazawa T., Ishida C., Takeuchi Y., Ohto C., Nishino T. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem. 1996 Nov 29;271(48):30748–30754. doi: 10.1074/jbc.271.48.30748. [DOI] [PubMed] [Google Scholar]
  14. Okada K., Minehira M., Zhu X., Suzuki K., Nakagawa T., Matsuda H., Kawamukai M. The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol. 1997 May;179(9):3058–3060. doi: 10.1128/jb.179.9.3058-3060.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okada K., Suzuki K., Kamiya Y., Zhu X., Fujisaki S., Nishimura Y., Nishino T., Nakagawa T., Kawamukai M., Matsuda H. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim Biophys Acta. 1996 Aug 16;1302(3):217–223. doi: 10.1016/0005-2760(96)00064-1. [DOI] [PubMed] [Google Scholar]
  16. Rose M. D., Broach J. R. Cloning genes by complementation in yeast. Methods Enzymol. 1991;194:195–230. doi: 10.1016/0076-6879(91)94017-7. [DOI] [PubMed] [Google Scholar]
  17. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  19. Song L., Poulter C. D. Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3044–3048. doi: 10.1073/pnas.91.8.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Suzuki K., Okada K., Kamiya Y., Zhu X. F., Nakagawa T., Kawamukai M., Matsuda H. Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J Biochem. 1997 Mar;121(3):496–505. doi: 10.1093/oxfordjournals.jbchem.a021614. [DOI] [PubMed] [Google Scholar]
  21. Suzuki K., Ueda M., Yuasa M., Nakagawa T., Kawamukai M., Matsuda H. Evidence that Escherichia coli ubiA product is a functional homolog of yeast COQ2, and the regulation of ubiA gene expression. Biosci Biotechnol Biochem. 1994 Oct;58(10):1814–1819. doi: 10.1271/bbb.58.1814. [DOI] [PubMed] [Google Scholar]
  22. Tarshis L. C., Proteau P. J., Kellogg B. A., Sacchettini J. C., Poulter C. D. Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15018–15023. doi: 10.1073/pnas.93.26.15018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tarshis L. C., Yan M., Poulter C. D., Sacchettini J. C. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry. 1994 Sep 13;33(36):10871–10877. doi: 10.1021/bi00202a004. [DOI] [PubMed] [Google Scholar]
  24. Wallace B. J., Young I. G. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta. 1977 Jul 7;461(1):84–100. doi: 10.1016/0005-2728(77)90071-8. [DOI] [PubMed] [Google Scholar]
  25. Xu H. W., Love J., Borghese R., Wall J. D. Identification and isolation of genes essential for H2 oxidation in Rhodobacter capsulatus. J Bacteriol. 1989 Feb;171(2):714–721. doi: 10.1128/jb.171.2.714-721.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yazdi M. A., Moir A. Characterization and cloning of the gerC locus of Bacillus subtilis 168. J Gen Microbiol. 1990 Jul;136(7):1335–1342. doi: 10.1099/00221287-136-7-1335. [DOI] [PubMed] [Google Scholar]
  27. Zhang Y. W., Koyama T., Ogura K. Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. J Bacteriol. 1997 Feb;179(4):1417–1419. doi: 10.1128/jb.179.4.1417-1419.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES