Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(19):5999–6004. doi: 10.1128/jb.179.19.5999-6004.1997

Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein.

G Bucca 1, Z Hindle 1, C P Smith 1
PMCID: PMC179499  PMID: 9324243

Abstract

The dnaK operon of Streptomyces coelicolor contains four genes (5'-dnaK-grpE-dnaJ-hspR). The fourth gene encodes a novel heat shock protein, HspR, which appears so far to be unique to the high-G+C actinomycete group of bacteria. HspR binds with high specificity to three inverted repeat sequences in the promoter region of the S. coelicolor dnaK operon, strongly suggesting a direct role for HspR in heat shock gene regulation. Here we present genetic and biochemical evidence that HspR is the repressor of the dnaK operon. Disruption of hspR leads to high-level constitutive transcription of the dnaK operon. Parallel transcriptional analyses of groESL1 and groEL2 expression demonstrated that heat shock regulation of the groE genes was essentially unaffected in an hspR null mutant, although the basal (uninduced) level of groEL2 transcription was slightly elevated compared with the wild type. The results of HspR titration experiments, where the dnaK operon promoter region was cloned at ca. 50 copies per chromosome, were consistent with the prediction that HspR functions as a negative autoregulator. His-tagged HspR, overproduced and purified from Escherichia coli, was shown to repress transcription from the dnaK operon promoter in vitro, providing additional evidence for the proposal that HspR directly regulates transcription of the dnaK operon. These studies indicate that there are at least two transcriptional mechanisms for controlling heat shock genes in S. coelicolor--one controlling the dnaK operon and another controlling the groE genes.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avedissian M., Lopes Gomes S. Expression of the groESL operon is cell-cycle controlled in Caulobacter crescentus. Mol Microbiol. 1996 Jan;19(1):79–89. doi: 10.1046/j.1365-2958.1996.347879.x. [DOI] [PubMed] [Google Scholar]
  2. Ayer D. E., Kretzner L., Eisenman R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell. 1993 Jan 29;72(2):211–222. doi: 10.1016/0092-8674(93)90661-9. [DOI] [PubMed] [Google Scholar]
  3. Babst M., Hennecke H., Fischer H. M. Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol. 1996 Feb;19(4):827–839. doi: 10.1046/j.1365-2958.1996.438968.x. [DOI] [PubMed] [Google Scholar]
  4. Bahl H., Müller H., Behrens S., Joseph H., Narberhaus F. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev. 1995 Oct;17(3):341–348. doi: 10.1111/j.1574-6976.1995.tb00217.x. [DOI] [PubMed] [Google Scholar]
  5. Bucca G., Ferina G., Puglia A. M., Smith C. P. The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol. 1995 Aug;17(4):663–674. doi: 10.1111/j.1365-2958.1995.mmi_17040663.x. [DOI] [PubMed] [Google Scholar]
  6. Bucca G., Smith C. P., Alberti M., Seidita G., Passantino R., Puglia A. M. Cloning and sequencing of the dnaK region of Streptomyces coelicolor A3(2). Gene. 1993 Aug 16;130(1):141–144. doi: 10.1016/0378-1119(93)90358-a. [DOI] [PubMed] [Google Scholar]
  7. Buchberger A., Schröder H., Hesterkamp T., Schönfeld H. J., Bukau B. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol. 1996 Aug 23;261(3):328–333. doi: 10.1006/jmbi.1996.0465. [DOI] [PubMed] [Google Scholar]
  8. Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol. 1993 Aug;9(4):671–680. doi: 10.1111/j.1365-2958.1993.tb01727.x. [DOI] [PubMed] [Google Scholar]
  9. Buttner M J, Fearnley I M, Bibb M J. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet. 1987 Aug;209(1):101–109. doi: 10.1007/BF00329843. [DOI] [PubMed] [Google Scholar]
  10. Chater K. F., Bruton C. J. Mutational cloning in Streptomyces and the isolation of antibiotic production genes. Gene. 1983 Dec;26(1):67–78. doi: 10.1016/0378-1119(83)90037-9. [DOI] [PubMed] [Google Scholar]
  11. Duchêne A. M., Kieser H. M., Hopwood D. A., Thompson C. J., Mazodier P. Characterization of two groEL genes in Streptomyces coelicolor A3(2). Gene. 1994 Jun 24;144(1):97–101. doi: 10.1016/0378-1119(94)90210-0. [DOI] [PubMed] [Google Scholar]
  12. Duchêne A. M., Thompson C. J., Mazodier P. Transcriptional analysis of groEL genes in Streptomyces coelicolor A3(2). Mol Gen Genet. 1994 Oct 17;245(1):61–68. doi: 10.1007/BF00279751. [DOI] [PubMed] [Google Scholar]
  13. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  14. Gottesman S., Maurizi M. R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev. 1992 Dec;56(4):592–621. doi: 10.1128/mr.56.4.592-621.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grandvalet C., Servant P., Mazodier P. Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol. 1997 Jan;23(1):77–84. doi: 10.1046/j.1365-2958.1997.1811563.x. [DOI] [PubMed] [Google Scholar]
  16. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  17. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  18. Hindle Z., Smith C. P. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol. 1994 Jun;12(5):737–745. doi: 10.1111/j.1365-2958.1994.tb01061.x. [DOI] [PubMed] [Google Scholar]
  19. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T. Plasmid and phage vectors for gene cloning and analysis in Streptomyces. Methods Enzymol. 1987;153:116–166. doi: 10.1016/0076-6879(87)53052-x. [DOI] [PubMed] [Google Scholar]
  20. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene. 1992 Feb 1;111(1):61–68. doi: 10.1016/0378-1119(92)90603-m. [DOI] [PubMed] [Google Scholar]
  21. Mager W. H., De Kruijff A. J. Stress-induced transcriptional activation. Microbiol Rev. 1995 Sep;59(3):506–531. doi: 10.1128/mr.59.3.506-531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakahigashi K., Yanagi H., Yura T. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res. 1995 Nov 11;23(21):4383–4390. [PMC free article] [PubMed] [Google Scholar]
  23. Oh S. H., Chater K. F. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol. 1997 Jan;179(1):122–127. doi: 10.1128/jb.179.1.122-127.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paget M. S., Hintermann G., Smith C. P. Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as reporter. Gene. 1994 Aug 19;146(1):105–110. doi: 10.1016/0378-1119(94)90842-7. [DOI] [PubMed] [Google Scholar]
  25. Raina S., Missiakas D., Georgopoulos C. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J. 1995 Mar 1;14(5):1043–1055. doi: 10.1002/j.1460-2075.1995.tb07085.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts R. C., Toochinda C., Avedissian M., Baldini R. L., Gomes S. L., Shapiro L. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol. 1996 Apr;178(7):1829–1841. doi: 10.1128/jb.178.7.1829-1841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rouvière P. E., De Las Peñas A., Mecsas J., Lu C. Z., Rudd K. E., Gross C. A. rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J. 1995 Mar 1;14(5):1032–1042. doi: 10.1002/j.1460-2075.1995.tb07084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schulz A., Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol. 1996 Feb;178(4):1088–1093. doi: 10.1128/jb.178.4.1088-1093.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schulz A., Tzschaschel B., Schumann W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol. 1995 Feb;15(3):421–429. doi: 10.1111/j.1365-2958.1995.tb02256.x. [DOI] [PubMed] [Google Scholar]
  30. Segal G., Ron E. Z. Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J Bacteriol. 1996 Jun;178(12):3634–3640. doi: 10.1128/jb.178.12.3634-3640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segal R., Ron E. Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett. 1996 Apr 15;138(1):1–10. doi: 10.1111/j.1574-6968.1996.tb08126.x. [DOI] [PubMed] [Google Scholar]
  32. Servant P., Thompson C., Mazodier P. Use of new Escherichia coli/Streptomyces conjugative vectors to probe the functions of the two groEL-like genes of Streptomyces albus G by gene disruption. Gene. 1993 Nov 30;134(1):25–32. doi: 10.1016/0378-1119(93)90170-8. [DOI] [PubMed] [Google Scholar]
  33. Smith C. P., Chater K. F. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J Mol Biol. 1988 Dec 5;204(3):569–580. doi: 10.1016/0022-2836(88)90356-7. [DOI] [PubMed] [Google Scholar]
  34. Smith G. E., Summers M. D. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. doi: 10.1016/0003-2697(80)90019-6. [DOI] [PubMed] [Google Scholar]
  35. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  36. Yuan G., Wong S. L. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol. 1995 Nov;177(22):6462–6468. doi: 10.1128/jb.177.22.6462-6468.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]
  38. Zuber U., Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol. 1994 Mar;176(5):1359–1363. doi: 10.1128/jb.176.5.1359-1363.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES