Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(19):6005–6009. doi: 10.1128/jb.179.19.6005-6009.1997

The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate.

M Adam 1, C Fraipont 1, N Rhazi 1, M Nguyen-Distèche 1, B Lakaye 1, J M Frère 1, B Devreese 1, J Van Beeumen 1, Y van Heijenoort 1, J van Heijenoort 1, J M Ghuysen 1
PMCID: PMC179500  PMID: 9324244

Abstract

Because the specificity profile of the membrane anchor-free G57-V577 penicillin-binding protein 3 (PBP3) of Escherichia coli for a large series of beta-lactam antibiotics is similar to that of the full-size membrane-bound PBP, the truncated PBP is expected to adopt the native folded conformation. The truncated PBP3 functions as a thiolesterase. In aqueous media and in the presence of millimolar concentrations of a properly structured amino compound, it catalyzes the aminolysis of the thiolester until completion, suggesting that the penicillin-binding module of PBP3 is designed to catalyze transpeptidation reactions. In contrast, the truncated PBP3 is devoid of glycan polymerization activity on the E. coli lipid II intermediate, suggesting that the non-penicillin-binding module of PBP3 is not a transglycosylase.

Full Text

The Full Text of this article is available as a PDF (699.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M., Damblon C., Jamin M., Zorzi W., Dusart V., Galleni M., el Kharroubi A., Piras G., Spratt B. G., Keck W. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem J. 1991 Oct 15;279(Pt 2):601–604. doi: 10.1042/bj2790601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adam M., Damblon C., Plaitin B., Christiaens L., Frère J. M. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases. Biochem J. 1990 Sep 1;270(2):525–529. doi: 10.1042/bj2700525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Begg K. J., Takasuga A., Edwards D. H., Dewar S. J., Spratt B. G., Adachi H., Ohta T., Matsuzawa H., Donachie W. D. The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J Bacteriol. 1990 Dec;172(12):6697–6703. doi: 10.1128/jb.172.12.6697-6703.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cartwright S. J., Fink A. L. Isolation of a covalent intermediate in beta -lactamase I catalysis. FEBS Lett. 1982 Jan 25;137(2):186–188. doi: 10.1016/0014-5793(82)80345-1. [DOI] [PubMed] [Google Scholar]
  5. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother. 1979 Nov;16(5):533–539. doi: 10.1128/aac.16.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  7. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  8. Fraipont C., Adam M., Nguyen-Distèche M., Keck W., Van Beeumen J., Ayala J. A., Granier B., Hara H., Ghuysen J. M. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. Biochem J. 1994 Feb 15;298(Pt 1):189–195. doi: 10.1042/bj2980189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgopapadakou N. H., Smith S. A., Sykes R. B. Mode of action of azthreonam. Antimicrob Agents Chemother. 1982 Jun;21(6):950–956. doi: 10.1128/aac.21.6.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ghuysen J. M., Charlier P., Coyette J., Duez C., Fonzé E., Fraipont C., Goffin C., Joris B., Nguyen-Distèche M. Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. Microb Drug Resist. 1996 Summer;2(2):163–175. doi: 10.1089/mdr.1996.2.163. [DOI] [PubMed] [Google Scholar]
  11. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Nguyen-Distèche M., Coyette J. Active-site-serine D-alanyl-D-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes. Biochem J. 1986 Apr 1;235(1):159–165. doi: 10.1042/bj2350159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghuysen J. M., Leyh-Bouille M., Campbell J. N., Moreno R., Frére J. M., Duez C., Nieto M., Perkins H. R. Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase--transpeptidase for peptide acceptors. Biochemistry. 1973 Mar 27;12(7):1243–1251. doi: 10.1021/bi00731a001. [DOI] [PubMed] [Google Scholar]
  13. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  14. Goffin C., Fraipont C., Ayala J., Terrak M., Nguyen-Distèche M., Ghuysen J. M. The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure. J Bacteriol. 1996 Sep;178(18):5402–5409. doi: 10.1128/jb.178.18.5402-5409.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grandchamps J., Nguyen-Distèche M., Damblon C., Frère J. M., Ghuysen J. M. Streptomyces K15 active-site serine DD-transpeptidase: specificity profile for peptide, thiol ester and ester carbonyl donors and pathways of the transfer reactions. Biochem J. 1995 Apr 15;307(Pt 2):335–339. doi: 10.1042/bj3070335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Höltje J. V. Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. Microb Drug Resist. 1996 Spring;2(1):99–103. doi: 10.1089/mdr.1996.2.99. [DOI] [PubMed] [Google Scholar]
  17. Ishino F., Matsuhashi M. Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem Biophys Res Commun. 1981 Aug 14;101(3):905–911. doi: 10.1016/0006-291x(81)91835-0. [DOI] [PubMed] [Google Scholar]
  18. Jamin M., Adam M., Damblon C., Christiaens L., Frère J. M. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates. Biochem J. 1991 Dec 1;280(Pt 2):499–506. doi: 10.1042/bj2800499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jamin M., Damblon C., Millier S., Hakenbeck R., Frère J. M. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with beta-lactams. Biochem J. 1993 Jun 15;292(Pt 3):735–741. doi: 10.1042/bj2920735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jamin M., Wilkin J. M., Frère J. M. A new kinetic mechanism for the concomitant hydrolysis and transfer reactions catalyzed by bacterial DD-peptidases. Biochemistry. 1993 Jul 20;32(28):7278–7285. doi: 10.1021/bi00079a026. [DOI] [PubMed] [Google Scholar]
  21. Lakaye B., Damblon C., Jamin M., Galleni M., Lepage S., Joris B., Marchand-Brynaert J., Frydrych C., Frere J. M. Synthesis, purification and kinetic properties of fluorescein-labelled penicillins. Biochem J. 1994 May 15;300(Pt 1):141–145. doi: 10.1042/bj3000141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lutkenhaus J. FtsZ ring in bacterial cytokinesis. Mol Microbiol. 1993 Aug;9(3):403–409. doi: 10.1111/j.1365-2958.1993.tb01701.x. [DOI] [PubMed] [Google Scholar]
  23. Martin M. T., Waley S. G. Kinetic characterization of the acyl-enzyme mechanism for beta-lactamase I. Biochem J. 1988 Sep 15;254(3):923–925. doi: 10.1042/bj2540923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nguyen-Distèche M., Leyh-Bouille M., Pirlot S., Frère J. M., Ghuysen J. M. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Biochem J. 1986 Apr 1;235(1):167–176. doi: 10.1042/bj2350167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pisabarro A. G., Prats R., Váquez D., Rodríguez-Tébar A. Activity of penicillin-binding protein 3 from Escherichia coli. J Bacteriol. 1986 Oct;168(1):199–206. doi: 10.1128/jb.168.1.199-206.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spratt B. G., Zhou J., Taylor M., Merrick M. J. Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol. 1996 Feb;19(3):639–640. doi: 10.1046/j.1365-2958.1996.442924.x. [DOI] [PubMed] [Google Scholar]
  27. Vicente M., Errington J. Structure, function and controls in microbial division. Mol Microbiol. 1996 Apr;20(1):1–7. doi: 10.1111/j.1365-2958.1996.tb02482.x. [DOI] [PubMed] [Google Scholar]
  28. van Heijenoort Y., Gómez M., Derrien M., Ayala J., van Heijenoort J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol. 1992 Jun;174(11):3549–3557. doi: 10.1128/jb.174.11.3549-3557.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES