Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(19):6048–6052. doi: 10.1128/jb.179.19.6048-6052.1997

The Vsr endonuclease of Escherichia coli: an efficient DNA repair enzyme and a potent mutagen.

G Macintyre 1, K M Doiron 1, C G Cupples 1
PMCID: PMC179507  PMID: 9324251

Abstract

The Vsr endonuclease of Escherichia coli initiates the repair of T/G mismatches caused by deamination of 5-methylcytosine to thymine. In this paper, we examine the capacity of Vsr to prevent CG-to-TA mutations in cells with increased transcription of the cytosine methylase gene (dcm). We find that sufficient Vsr is produced by a single chromosomal copy of vsr to prevent mutagenesis. We also investigate the cause of the transition and frameshift mutations in cells overproducing Vsr. Neither the absence of the dcm methylase nor its overproduction affects Vsr-stimulated mutagenesis. However, addition of mutS, mutL, or mutH on multicopy plasmids has a significant effect: mutL or mutH decreases the number of mutations, while mutS stimulates mutagenesis. The mut-containing plasmids have the same effect in cells treated with 2-aminopurine and in cells made defective in DNA proofreading, two experimental situations known to cause transition and frameshift mutations by saturating mismatch repair.

Full Text

The Full Text of this article is available as a PDF (305.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandaru B., Gopal J., Bhagwat A. S. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites. J Biol Chem. 1996 Mar 29;271(13):7851–7859. doi: 10.1074/jbc.271.13.7851. [DOI] [PubMed] [Google Scholar]
  2. Bandaru B., Wyszynski M., Bhagwat A. S. HpaII methyltransferase is mutagenic in Escherichia coli. J Bacteriol. 1995 May;177(10):2950–2952. doi: 10.1128/jb.177.10.2950-2952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  4. Cupples C. G., Cabrera M., Cruz C., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics. 1990 Jun;125(2):275–280. doi: 10.1093/genetics/125.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cupples C. G., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5345–5349. doi: 10.1073/pnas.86.14.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Damagnez V., Doutriaux M. P., Radman M. Saturation of mismatch repair in the mutD5 mutator strain of Escherichia coli. J Bacteriol. 1989 Aug;171(8):4494–4497. doi: 10.1128/jb.171.8.4494-4497.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dar M. E., Bhagwat A. S. Mechanism of expression of DNA repair gene vsr, an Escherichia coli gene that overlaps the DNA cytosine methylase gene, dcm. Mol Microbiol. 1993 Aug;9(4):823–833. doi: 10.1111/j.1365-2958.1993.tb01741.x. [DOI] [PubMed] [Google Scholar]
  8. Doiron K. M., Viau S., Koutroumanis M., Cupples C. G. Overexpression of vsr in Escherichia coli is mutagenic. J Bacteriol. 1996 Jul;178(14):4294–4296. doi: 10.1128/jb.178.14.4294-4296.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galitski T., Roth J. R. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science. 1995 Apr 21;268(5209):421–423. doi: 10.1126/science.7716546. [DOI] [PubMed] [Google Scholar]
  10. Glickman B. W., Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1063–1067. doi: 10.1073/pnas.77.2.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones M., Wagner R., Radman M. Mismatch repair of deaminated 5-methyl-cytosine. J Mol Biol. 1987 Mar 5;194(1):155–159. doi: 10.1016/0022-2836(87)90724-8. [DOI] [PubMed] [Google Scholar]
  12. Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lieb M. Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites. J Bacteriol. 1987 Nov;169(11):5241–5246. doi: 10.1128/jb.169.11.5241-5246.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lieb M., Bhagwat A. S. Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol. 1996 May;20(3):467–473. doi: 10.1046/j.1365-2958.1996.5291066.x. [DOI] [PubMed] [Google Scholar]
  15. Lieb M. Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. Genetics. 1991 May;128(1):23–27. doi: 10.1093/genetics/128.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nghiem Y., Cabrera M., Cupples C. G., Miller J. H. The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2709–2713. doi: 10.1073/pnas.85.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Petropoulos L., Vidmar J. J., Passi E., Cupples C. G. A simple assay for monitoring the mutagenic effects of 5-methylcytosine deamination in Escherichia coli. Mutat Res. 1994 Jan 16;304(2):181–185. doi: 10.1016/0027-5107(94)90209-7. [DOI] [PubMed] [Google Scholar]
  18. Ruiz S. M., Létourneau S., Cupples C. G. Isolation and characterization of an Escherichia coli strain with a high frequency of C-to-T mutations at 5-methylcytosines. J Bacteriol. 1993 Aug;175(16):4985–4989. doi: 10.1128/jb.175.16.4985-4989.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schaaper R. M. Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8126–8130. doi: 10.1073/pnas.85.21.8126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schaaper R. M., Radman M. The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J. 1989 Nov;8(11):3511–3516. doi: 10.1002/j.1460-2075.1989.tb08516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shen J. C., Rideout W. M., 3rd, Jones P. A. High frequency mutagenesis by a DNA methyltransferase. Cell. 1992 Dec 24;71(7):1073–1080. doi: 10.1016/s0092-8674(05)80057-1. [DOI] [PubMed] [Google Scholar]
  22. Sohail A., Lieb M., Dar M., Bhagwat A. S. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol. 1990 Aug;172(8):4214–4221. doi: 10.1128/jb.172.8.4214-4221.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wu T. H., Marinus M. G. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol. 1994 Sep;176(17):5393–5400. doi: 10.1128/jb.176.17.5393-5400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yang A. S., Shen J. C., Zingg J. M., Mi S., Jones P. A. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995 Apr 25;23(8):1380–1387. doi: 10.1093/nar/23.8.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zell R., Fritz H. J. DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J. 1987 Jun;6(6):1809–1815. doi: 10.1002/j.1460-2075.1987.tb02435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES