Abstract
Two proteins that bind penicillin were observed in Escherichia coli infected with lambda phages 141, 142, 650, and 651 from the Kohara genomic library. These phages carry chromosomal DNA fragments that do not contain any known penicillin binding protein (PBP) genes, indicating that unrecognized gene products were exhibiting penicillin binding activity. The genes encoding these proteins were subcloned, sequenced, and identified. One gene was ampC, which encodes a chromosomal class C beta-lactamase. The second gene was located at about 8.5 min on the E. coli genomic map and is a previously uncharacterized open reading frame, here named ampH, that encodes a protein closely related to the class C beta-lactamases. The predicted AmpH protein is similar in length to AmpC, but there are extensive alterations in the amino acid sequence between the SXXK and YXN motifs of the two proteins. AmpH bound strongly to penicillin G, cefoxitin, and cephalosporin C; was temperature sensitive; and disappeared from cells after overnight incubation in stationary phase. Although closely related to AmpC and other class C beta-lactamases, AmpH showed no beta-lactamase activity toward the substrate nitrocefin. Mutation of the ampC and/or ampH genes in E. coli lacking PBPs 1a and 5 produced morphologically aberrant cells, particularly in cell filaments induced by aztreonam. Thus, these two members of the beta-lactamase family exhibit characteristics similar to those of the classical PBPs, and their absence affects cell morphology. These traits suggest that AmpC and AmpH may play roles in the normal course of peptidoglycan synthesis, remodeling, or recycling.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amanuma H., Strominger J. L. Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. J Biol Chem. 1980 Dec 10;255(23):11173–11180. [PubMed] [Google Scholar]
- Baquero M. R., Bouzon M., Quintela J. C., Ayala J. A., Moreno F. dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J Bacteriol. 1996 Dec;178(24):7106–7111. doi: 10.1128/jb.178.24.7106-7111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett P. M., Chopra I. Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):153–158. doi: 10.1128/aac.37.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop R. E., Weiner J. H. Complementation of growth defect in an ampC deletion mutant of Escherichia coli. FEMS Microbiol Lett. 1993 Dec 15;114(3):349–354. doi: 10.1111/j.1574-6968.1993.tb06597.x. [DOI] [PubMed] [Google Scholar]
- Bishop R. E., Weiner J. H. Coordinate regulation of murein peptidase activity and AmpC beta-lactamase synthesis in Escherichia coli. FEBS Lett. 1992 Jun 15;304(2-3):103–108. doi: 10.1016/0014-5793(92)80598-b. [DOI] [PubMed] [Google Scholar]
- Bittner M., Vapnek D. Versatile cloning vectors derived from the runaway-replication plasmid pKN402. Gene. 1981 Dec;15(4):319–329. doi: 10.1016/0378-1119(81)90175-x. [DOI] [PubMed] [Google Scholar]
- Borodovsky M., McIninch J. D., Koonin E. V., Rudd K. E., Médigue C., Danchin A. Detection of new genes in a bacterial genome using Markov models for three gene classes. Nucleic Acids Res. 1995 Sep 11;23(17):3554–3562. doi: 10.1093/nar/23.17.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botta G. A., Park J. T. Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol. 1981 Jan;145(1):333–340. doi: 10.1128/jb.145.1.333-340.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broome-Smith J. K. Construction of a mutant of Escherichia coli that has deletions of both the penicillin-binding protein 5 and 6 genes. J Gen Microbiol. 1985 Aug;131(8):2115–2118. doi: 10.1099/00221287-131-8-2115. [DOI] [PubMed] [Google Scholar]
- Broome-Smith J., Spratt B. G. An amino acid substitution that blocks the deacylation step in the enzyme mechanism of penicillin-binding protein 5 of Escherichia coli. FEBS Lett. 1984 Jan 9;165(2):185–189. doi: 10.1016/0014-5793(84)80166-0. [DOI] [PubMed] [Google Scholar]
- Dubus A., Normark S., Kania M., Page M. G. The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry. 1994 Jul 19;33(28):8577–8586. doi: 10.1021/bi00194a024. [DOI] [PubMed] [Google Scholar]
- Frère J. M. Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol. 1995 May;16(3):385–395. doi: 10.1111/j.1365-2958.1995.tb02404.x. [DOI] [PubMed] [Google Scholar]
- Ghuysen J. M., Charlier P., Coyette J., Duez C., Fonzé E., Fraipont C., Goffin C., Joris B., Nguyen-Distèche M. Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and multiprotein complexes. Microb Drug Resist. 1996 Summer;2(2):163–175. doi: 10.1089/mdr.1996.2.163. [DOI] [PubMed] [Google Scholar]
- Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
- Henderson T. A., Dombrosky P. M., Young K. D. Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol. 1994 Jan;176(1):256–259. doi: 10.1128/jb.176.1.256-259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson T. A., Templin M., Young K. D. Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol. 1995 Apr;177(8):2074–2079. doi: 10.1128/jb.177.8.2074-2079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs C., Huang L. J., Bartowsky E., Normark S., Park J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 1994 Oct 3;13(19):4684–4694. doi: 10.1002/j.1460-2075.1994.tb06792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J. A., Dideberg O., Charlier P., Wery J. P., Libert M., Moews P. C., Knox J. R., Duez C., Fraipont C., Joris B. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science. 1986 Mar 21;231(4744):1429–1431. doi: 10.1126/science.3082007. [DOI] [PubMed] [Google Scholar]
- Kirby R. Evolutionary origin of the class A and class C beta-lactamases. J Mol Evol. 1992 Apr;34(4):345–350. doi: 10.1007/BF00160242. [DOI] [PubMed] [Google Scholar]
- Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
- Korfmann G., Sanders C. C., Moland E. S. Altered phenotypes associated with ampD mutations in Enterobacter cloacae. Antimicrob Agents Chemother. 1991 Feb;35(2):358–364. doi: 10.1128/aac.35.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kristensen C. S., Eberl L., Sanchez-Romero J. M., Givskov M., Molin S., De Lorenzo V. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol. 1995 Jan;177(1):52–58. doi: 10.1128/jb.177.1.52-58.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulakauskas S., Wikström P. M., Berg D. E. Efficient introduction of cloned mutant alleles into the Escherichia coli chromosome. J Bacteriol. 1991 Apr;173(8):2633–2638. doi: 10.1128/jb.173.8.2633-2638.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis E. R., Winterberg K. M., Fink A. L. A point mutation leads to altered product specificity in beta-lactamase catalysis. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):443–447. doi: 10.1073/pnas.94.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindberg F., Normark S. Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. Rev Infect Dis. 1986 Jul-Aug;8 (Suppl 3):S292–S304. doi: 10.1093/clinids/8.supplement_3.s292. [DOI] [PubMed] [Google Scholar]
- Mottl H., Nieland P., de Kort G., Wierenga J. J., Keck W. Deletion of an additional domain located between SXXK and SXN active-site fingerprints in penicillin-binding protein 4 from Escherichia coli. J Bacteriol. 1992 May;174(10):3261–3269. doi: 10.1128/jb.174.10.3261-3269.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mottl H., Terpstra P., Keck W. Penicillin-binding protein 4 of Escherichia coli shows a novel type of primary structure among penicillin-interacting proteins. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):213–220. doi: 10.1016/0378-1097(91)90160-c. [DOI] [PubMed] [Google Scholar]
- O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park J. T. The convergence of murein recycling research with beta-lactamase research. Microb Drug Resist. 1996 Spring;2(1):105–112. doi: 10.1089/mdr.1996.2.105. [DOI] [PubMed] [Google Scholar]
- Park J. T. Why does Escherichia coli recycle its cell wall peptides? Mol Microbiol. 1995 Aug;17(3):421–426. doi: 10.1111/j.1365-2958.1995.mmi_17030421.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. F., Wiese B. A., Wojzynski M. K., Davison D. B., Worley K. C. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 1996 May;6(5):454–462. doi: 10.1101/gr.6.5.454. [DOI] [PubMed] [Google Scholar]
- Spratt B. G., Pardee A. B. Penicillin-binding proteins and cell shape in E. coli. Nature. 1975 Apr 10;254(5500):516–517. doi: 10.1038/254516a0. [DOI] [PubMed] [Google Scholar]
- Sykes R. B., Bonner D. P. Discovery and development of the monobactams. Rev Infect Dis. 1985 Nov-Dec;7 (Suppl 4):S579–S593. doi: 10.1093/clinids/7.supplement_4.s579. [DOI] [PubMed] [Google Scholar]
- Worley K. C., Wiese B. A., Smith R. F. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 1995 Sep;5(2):173–184. doi: 10.1101/gr.5.2.173. [DOI] [PubMed] [Google Scholar]
- van der Linden M. P., de Haan L., Dideberg O., Keck W. Site-directed mutagenesis of proposed active-site residues of penicillin-binding protein 5 from Escherichia coli. Biochem J. 1994 Oct 15;303(Pt 2):357–362. doi: 10.1042/bj3030357. [DOI] [PMC free article] [PubMed] [Google Scholar]