Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(19):6127–6132. doi: 10.1128/jb.179.19.6127-6132.1997

Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins.

X Z Li 1, H Nikaido 1, K E Williams 1
PMCID: PMC179518  PMID: 9324262

Abstract

Silver-resistant mutants were selected by stepwise exposure of silver-susceptible clinical strains of Escherichia coli, two of which did not contain any plasmids, to either silver nitrate or silver sulfadiazine. These mutants showed complete cross-resistance to both compounds. They showed low-level cross-resistance to cephalosporins and HgCl2 but not to other heavy metals. The Ag-resistant mutants had decreased outer membrane (OM) permeability to cephalosporins, and all five resistant mutants tested were deficient in major porins, either OmpF or OmpF plus OmpC. However, the well-studied OmpF- and/or OmpC-deficient mutants of laboratory strains K-12 and B/r were not resistant to either silver compound. Resistant strains accumulated up to fourfold less (110m)AgNO3 than the parental strains. The treatment of cells with carbonyl cyanide m-chlorophenylhydrazone increased Ag accumulation in Ag-susceptible and -resistant strains, suggesting that even the wild-type Ag-susceptible strains had an endogenous Ag efflux activity, which occurred at higher levels in Ag-resistant mutants. The addition of glucose as an energy source to starved cells activated the efflux of Ag. The results suggest that active efflux, presumably coded by a chromosomal gene(s), may play a major role in silver resistance, which is likely to be enhanced synergistically by decreases in OM permeability.

Full Text

The Full Text of this article is available as a PDF (489.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bavoil P., Nikaido H., von Meyenburg K. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet. 1977 Dec 14;158(1):23–33. doi: 10.1007/BF00455116. [DOI] [PubMed] [Google Scholar]
  2. Deshpande L. M., Chopade B. A. Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals. 1994 Jan;7(1):49–56. doi: 10.1007/BF00205194. [DOI] [PubMed] [Google Scholar]
  3. Haefeli C., Franklin C., Hardy K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol. 1984 Apr;158(1):389–392. doi: 10.1128/jb.158.1.389-392.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harder K. J., Nikaido H., Matsuhashi M. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother. 1981 Oct;20(4):549–552. doi: 10.1128/aac.20.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hendry A. T., Stewart I. O. Silver-resistant Enterobacteriaceae from hospital patients. Can J Microbiol. 1979 Aug;25(8):915–921. doi: 10.1139/m79-136. [DOI] [PubMed] [Google Scholar]
  6. Li X. Z., Livermore D. M., Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother. 1994 Aug;38(8):1732–1741. doi: 10.1128/aac.38.8.1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Li X. Z., Nikaido H., Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995 Sep;39(9):1948–1953. doi: 10.1128/aac.39.9.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lutkenhaus J. F. Role of a major outer membrane protein in Escherichia coli. J Bacteriol. 1977 Aug;131(2):631–637. doi: 10.1128/jb.131.2.631-637.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ma D., Alberti M., Lynch C., Nikaido H., Hearst J. E. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996 Jan;19(1):101–112. doi: 10.1046/j.1365-2958.1996.357881.x. [DOI] [PubMed] [Google Scholar]
  10. McHugh G. L., Moellering R. C., Hopkins C. C., Swartz M. N. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet. 1975 Feb 1;1(7901):235–240. doi: 10.1016/s0140-6736(75)91138-1. [DOI] [PubMed] [Google Scholar]
  11. McMurry L., Petrucci R. E., Jr, Levy S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3974–3977. doi: 10.1073/pnas.77.7.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Modak S. M., Fox C. L., Jr Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol. 1973 Oct 1;22(19):2391–2404. doi: 10.1016/0006-2952(73)90341-9. [DOI] [PubMed] [Google Scholar]
  13. Modak S. M., Fox C. L., Jr Sulfadiazine silver-resistant Pseudomonas in Burns. New topical agents. Arch Surg. 1981 Jul;116(7):854–857. doi: 10.1001/archsurg.1981.01380190006002. [DOI] [PubMed] [Google Scholar]
  14. Nakajima H., Kobayashi K., Kobayashi M., Asako H., Aono R. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol. 1995 Jun;61(6):2302–2307. doi: 10.1128/aem.61.6.2302-2307.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nesbitt R. U., Jr, Sandmann B. J. Solubility studies of silver sulfadiazine. J Pharm Sci. 1977 Apr;66(4):519–522. doi: 10.1002/jps.2600660414. [DOI] [PubMed] [Google Scholar]
  16. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996 Oct;178(20):5853–5859. doi: 10.1128/jb.178.20.5853-5859.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  18. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Odermatt A., Krapf R., Solioz M. Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun. 1994 Jul 15;202(1):44–48. doi: 10.1006/bbrc.1994.1891. [DOI] [PubMed] [Google Scholar]
  20. Pugsley A. P., Schnaitman C. A. Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. J Bacteriol. 1978 Mar;133(3):1181–1189. doi: 10.1128/jb.133.3.1181-1189.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Silver S., Ji G. Newer systems for bacterial resistances to toxic heavy metals. Environ Health Perspect. 1994 Sep;102 (Suppl 3):107–113. doi: 10.1289/ehp.94102s3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silver S., Phung L. T. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789. doi: 10.1146/annurev.micro.50.1.753. [DOI] [PubMed] [Google Scholar]
  23. Solioz M., Odermatt A. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem. 1995 Apr 21;270(16):9217–9221. doi: 10.1074/jbc.270.16.9217. [DOI] [PubMed] [Google Scholar]
  24. Starodub M. E., Trevors J. T. Silver accumulation and resistance in Escherichia coli R1. J Inorg Biochem. 1990 Aug;39(4):317–325. doi: 10.1016/0162-0134(90)80030-2. [DOI] [PubMed] [Google Scholar]
  25. Starodub M. E., Trevors J. T. Silver resistance in Escherichia coli R1. J Med Microbiol. 1989 Jun;29(2):101–110. doi: 10.1099/00222615-29-2-101. [DOI] [PubMed] [Google Scholar]
  26. Thanassi D. G., Suh G. S., Nikaido H. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J Bacteriol. 1995 Feb;177(4):998–1007. doi: 10.1128/jb.177.4.998-1007.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES