Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6221–6227. doi: 10.1128/jb.179.20.6221-6227.1997

Construction and characterization of a Bacteroides thetaiotaomicron recA mutant: transfer of Bacteroides integrated conjugative elements is RecA independent.

A J Cooper 1, A P Kalinowski 1, N B Shoemaker 1, A A Salyers 1
PMCID: PMC179533  PMID: 9335266

Abstract

We report the construction and analysis of a Bacteroides thetaiotaomicron recA disruption mutant and an investigation of whether RecA is required for excision and integration of Bacteroides mobile DNA elements. The recA mutant was deficient in homologous recombination and was more sensitive than the wild-type strain to DNA-damaging agents. The recA mutant was also more sensitive to oxygen than the wild type, indicating that repair of DNA contributes to the aerotolerance of B. thetaiotaomicron. Many Bacteroides clinical isolates carry self-transmissible chromosomal elements known as conjugative transposons. These conjugative transposons can also excise and mobilize in trans a family of unlinked integrated elements called nonreplicating Bacteroides units (NBUs). The results of a previous study had raised the possibility that RecA plays a role in excision of Bacteroides conjugative transposons, but this hypothesis could not be tested in Bacteroides spp. because no RecA-deficient Bacteroides strain was available. We report here that the excision and integration of the Bacteroides conjugative transposons, as well as NBU1 and Tn4351, were unaffected by the absence of RecA activity.

Full Text

The Full Text of this article is available as a PDF (474.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedzyk L. A., Shoemaker N. B., Young K. E., Salyers A. A. Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol. 1992 Jan;174(1):166–172. doi: 10.1128/jb.174.1.166-172.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper A. J., Shoemaker N. B., Salyers A. A. The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother. 1996 Feb;40(2):506–508. doi: 10.1128/aac.40.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duwat P., Ehrlich S. D., Gruss A. The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol. 1995 Sep;17(6):1121–1131. doi: 10.1111/j.1365-2958.1995.mmi_17061121.x. [DOI] [PubMed] [Google Scholar]
  4. Feldhaus M. J., Hwa V., Cheng Q., Salyers A. A. Use of an Escherichia coli beta-glucuronidase gene as a reporter gene for investigation of Bacteroides promoters. J Bacteriol. 1991 Jul;173(14):4540–4543. doi: 10.1128/jb.173.14.4540-4543.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Franke A. E., Clewell D. B. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 1981 Jan;145(1):494–502. doi: 10.1128/jb.145.1.494-502.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman H. J., Parker J. R., Southern J. A., Woods D. R. Cloning and expression in Escherichia coli of a recA-like gene from Bacteroides fragilis. Gene. 1987;58(2-3):265–271. doi: 10.1016/0378-1119(87)90381-7. [DOI] [PubMed] [Google Scholar]
  7. Goodman H. J., Woods D. R. Molecular analysis of the Bacteroides fragilis recA gene. Gene. 1990 Sep 28;94(1):77–82. doi: 10.1016/0378-1119(90)90470-c. [DOI] [PubMed] [Google Scholar]
  8. Hwa V., Shoemaker N. B., Salyers A. A. Direct repeats flanking the Bacteroides transposon Tn4351 are insertion sequence elements. J Bacteriol. 1988 Jan;170(1):449–451. doi: 10.1128/jb.170.1.449-451.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keyer K., Gort A. S., Imlay J. A. Superoxide and the production of oxidative DNA damage. J Bacteriol. 1995 Dec;177(23):6782–6790. doi: 10.1128/jb.177.23.6782-6790.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matthews B. G., Guiney D. G. Characterization and mapping of regions encoding clindamycin resistance, tetracycline resistance, and a replication function on the Bacteroides R plasmid pCP1. J Bacteriol. 1986 Aug;167(2):517–521. doi: 10.1128/jb.167.2.517-521.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  12. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid. 1996 Jan;35(1):1–13. doi: 10.1006/plas.1996.0001. [DOI] [PubMed] [Google Scholar]
  13. Meyer R. J., Shapiro J. A. Genetic organization of the broad-host-range IncP-1 plasmid R751. J Bacteriol. 1980 Sep;143(3):1362–1373. doi: 10.1128/jb.143.3.1362-1373.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pennington C. D., Gregory E. M. Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron. J Bacteriol. 1986 May;166(2):528–532. doi: 10.1128/jb.166.2.528-532.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeves A. R., D'Elia J. N., Frias J., Salyers A. A. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol. 1996 Feb;178(3):823–830. doi: 10.1128/jb.178.3.823-830.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salyers A. A., Shoemaker N. B. Conjugative transposons: the force behind the spread of antibiotic resistance genes among Bacteroides clinical isolates. Anaerobe. 1995 Jun;1(3):143–150. doi: 10.1006/anae.1995.1011. [DOI] [PubMed] [Google Scholar]
  18. Salyers A. A., Shoemaker N. B., Li L. Y. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol. 1995 Oct;177(20):5727–5731. doi: 10.1128/jb.177.20.5727-5731.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salyers A. A., Shoemaker N. B., Stevens A. M., Li L. Y. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 1995 Dec;59(4):579–590. doi: 10.1128/mr.59.4.579-590.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shoemaker N. B., Barber R. D., Salyers A. A. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol. 1989 Mar;171(3):1294–1302. doi: 10.1128/jb.171.3.1294-1302.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol. 1986 Mar;165(3):929–936. doi: 10.1128/jb.165.3.929-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shoemaker N. B., Guthrie E. P., Salyers A. A., Gardner J. F. Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J Bacteriol. 1985 May;162(2):626–632. doi: 10.1128/jb.162.2.626-632.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shoemaker N. B., Salyers A. A. A cryptic 65-kilobase-pair transposonlike element isolated from Bacteroides uniformis has homology with Bacteroides conjugal tetracycline resistance elements. J Bacteriol. 1990 Apr;172(4):1694–1702. doi: 10.1128/jb.172.4.1694-1702.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shoemaker N. B., Wang G. R., Salyers A. A. NBU1, a mobilizable site-specific integrated element from Bacteroides spp., can integrate nonspecifically in Escherichia coli. J Bacteriol. 1996 Jun;178(12):3601–3607. doi: 10.1128/jb.178.12.3601-3607.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shoemaker N. B., Wang G. R., Salyers A. A. The Bacteroides mobilizable insertion element, NBU1, integrates into the 3' end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J Bacteriol. 1996 Jun;178(12):3594–3600. doi: 10.1128/jb.178.12.3594-3600.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shoemaker N. B., Wang G. R., Stevens A. M., Salyers A. A. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J Bacteriol. 1993 Oct;175(20):6578–6587. doi: 10.1128/jb.175.20.6578-6587.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith C. J., Rogers M. B., McKee M. L. Heterologous gene expression in Bacteroides fragilis. Plasmid. 1992 Mar;27(2):141–154. doi: 10.1016/0147-619x(92)90014-2. [DOI] [PubMed] [Google Scholar]
  28. Tancula E., Feldhaus M. J., Bedzyk L. A., Salyers A. A. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J Bacteriol. 1992 Sep;174(17):5609–5616. doi: 10.1128/jb.174.17.5609-5616.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tocher J. H., Edwards D. I. Evidence for the direct interaction of reduced metronidazole derivatives with DNA bases. Biochem Pharmacol. 1994 Sep 15;48(6):1089–1094. doi: 10.1016/0006-2952(94)90144-9. [DOI] [PubMed] [Google Scholar]
  30. Waldor M. K., Tschäpe H., Mekalanos J. J. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 1996 Jul;178(14):4157–4165. doi: 10.1128/jb.178.14.4157-4165.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES