Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6271–6278. doi: 10.1128/jb.179.20.6271-6278.1997

Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.

S Gaisser 1, A Trefzer 1, S Stockert 1, A Kirschning 1, A Bechthold 1
PMCID: PMC179539  PMID: 9335272

Abstract

A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbuchner J., Cullum J. DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol Gen Genet. 1984;195(1-2):134–138. doi: 10.1007/BF00332735. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Beck J., Ripka S., Siegner A., Schiltz E., Schweizer E. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem. 1990 Sep 11;192(2):487–498. doi: 10.1111/j.1432-1033.1990.tb19252.x. [DOI] [PubMed] [Google Scholar]
  4. Bedford D. J., Schweizer E., Hopwood D. A., Khosla C. Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). J Bacteriol. 1995 Aug;177(15):4544–4548. doi: 10.1128/jb.177.15.4544-4548.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergh S., Uhlén M. Analysis of a polyketide synthesis-encoding gene cluster of Streptomyces curacoi. Gene. 1992 Aug 1;117(1):131–136. doi: 10.1016/0378-1119(92)90501-f. [DOI] [PubMed] [Google Scholar]
  6. Bibb M. J., Janssen G. R., Ward J. M. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene. 1985;38(1-3):215–226. doi: 10.1016/0378-1119(85)90220-3. [DOI] [PubMed] [Google Scholar]
  7. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992 Jul 1;116(1):43–49. doi: 10.1016/0378-1119(92)90627-2. [DOI] [PubMed] [Google Scholar]
  8. Bourn W. R., Babb B. Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res. 1995 Sep 25;23(18):3696–3703. doi: 10.1093/nar/23.18.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buzzetti F., Eisenberg F., Grant H. N., Keller-Schierlein W., Voser W., Zähner H. Avilamycin. Experientia. 1968 Apr 15;24(4):320–323. doi: 10.1007/BF02140794. [DOI] [PubMed] [Google Scholar]
  10. Decker H., Gaisser S., Pelzer S., Schneider P., Westrich L., Wohlleben W., Bechthold A. A general approach for cloning and characterizing dNDP-glucose dehydratase genes from actinomycetes. FEMS Microbiol Lett. 1996 Aug 1;141(2-3):195–201. doi: 10.1111/j.1574-6968.1996.tb08384.x. [DOI] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Distler J., Ebert A., Mansouri K., Pissowotzki K., Stockmann M., Piepersberg W. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res. 1987 Oct 12;15(19):8041–8056. doi: 10.1093/nar/15.19.8041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grimm A., Madduri K., Ali A., Hutchinson C. R. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene. 1994 Dec 30;151(1-2):1–10. doi: 10.1016/0378-1119(94)90625-4. [DOI] [PubMed] [Google Scholar]
  14. Hillemann D., Pühler A., Wohlleben W. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res. 1991 Feb 25;19(4):727–731. doi: 10.1093/nar/19.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hutchinson C. R., Fujii I. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol. 1995;49:201–238. doi: 10.1146/annurev.mi.49.100195.001221. [DOI] [PubMed] [Google Scholar]
  16. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Engineered biosynthesis of novel polyketides. Science. 1993 Dec 3;262(5139):1546–1550. doi: 10.1126/science.8248802. [DOI] [PubMed] [Google Scholar]
  17. McDaniel R., Ebert-Khosla S., Hopwood D. A., Khosla C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature. 1995 Jun 15;375(6532):549–554. doi: 10.1038/375549a0. [DOI] [PubMed] [Google Scholar]
  18. Mertz J. L., Peloso J. S., Barker B. J., Babbitt G. E., Occolowitz J. L., Simson V. L., Kline R. M. Isolation and structural identification of nine avilamycins. J Antibiot (Tokyo) 1986 Jul;39(7):877–887. doi: 10.7164/antibiotics.39.877. [DOI] [PubMed] [Google Scholar]
  19. Nakashio S., Iwasawa H., Dun F. Y., Kanemitsu K., Shimada J. Everninomicin, a new oligosaccharide antibiotic: its antimicrobial activity, post-antibiotic effect and synergistic bactericidal activity. Drugs Exp Clin Res. 1995;21(1):7–16. [PubMed] [Google Scholar]
  20. Okanishi M., Suzuki K., Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974 Feb;80(2):389–400. doi: 10.1099/00221287-80-2-389. [DOI] [PubMed] [Google Scholar]
  21. Piepersberg W. Pathway engineering in secondary metabolite-producing actinomycetes. Crit Rev Biotechnol. 1994;14(3):251–285. doi: 10.3109/07388554409079835. [DOI] [PubMed] [Google Scholar]
  22. Pissowotzki K., Mansouri K., Piepersberg W. Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Mol Gen Genet. 1991 Dec;231(1):113–123. doi: 10.1007/BF00293829. [DOI] [PubMed] [Google Scholar]
  23. Rajgarhia V. B., Strohl W. R. Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis. J Bacteriol. 1997 Apr;179(8):2690–2696. doi: 10.1128/jb.179.8.2690-2696.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thompson C. J., Kieser T., Ward J. M., Hopwood D. A. Physical analysis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene. 1982 Nov;20(1):51–62. doi: 10.1016/0378-1119(82)90086-5. [DOI] [PubMed] [Google Scholar]
  27. Travis J. Reviving the antibiotic miracle? Science. 1994 Apr 15;264(5157):360–362. doi: 10.1126/science.8153615. [DOI] [PubMed] [Google Scholar]
  28. Urban C., Mariano N., Mosinka-Snipas K., Wadee C., Chahrour T., Rahal J. J. Comparative in-vitro activity of SCH 27899, a novel everninomicin, and vancomycin. J Antimicrob Chemother. 1996 Feb;37(2):361–364. doi: 10.1093/jac/37.2.361. [DOI] [PubMed] [Google Scholar]
  29. Vara J., Lewandowska-Skarbek M., Wang Y. G., Donadio S., Hutchinson C. R. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol. 1989 Nov;171(11):5872–5881. doi: 10.1128/jb.171.11.5872-5881.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolf H. Avilamycin, an inhibitor of the 30 S ribosomal subunits function. FEBS Lett. 1973 Oct 15;36(2):181–186. doi: 10.1016/0014-5793(73)80364-3. [DOI] [PubMed] [Google Scholar]
  31. Ye J., Dickens M. L., Plater R., Li Y., Lawrence J., Strohl W. R. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol. 1994 Oct;176(20):6270–6280. doi: 10.1128/jb.176.20.6270-6280.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES