Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Oct;179(20):6285–6293. doi: 10.1128/jb.179.20.6285-6293.1997

Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.

N Goupil-Feuillerat 1, M Cocaign-Bousquet 1, J J Godon 1, S D Ehrlich 1, P Renault 1
PMCID: PMC179541  PMID: 9335274

Abstract

The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airas R. K., Schischkoff J., Cramer F. Biochemical comparison of the Neurospora crassa wild-type and the temperature-sensitive leucine-auxotroph mutant leu-5. Detailed kinetic comparison of the leucyl-tRNA synthetases. Eur J Biochem. 1986 Jul 1;158(1):51–56. doi: 10.1111/j.1432-1033.1986.tb09719.x. [DOI] [PubMed] [Google Scholar]
  2. Bassit N., Boquien C. Y., Picque D., Corrieu G. Effect of Initial Oxygen Concentration on Diacetyl and Acetoin Production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol. 1993 Jun;59(6):1893–1897. doi: 10.1128/aem.59.6.1893-1897.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biaudet V., Samson F., Anagnostopoulos C., Ehrlich S. D., Bessières P. Computerized genetic map of Bacillus subtilis. Microbiology. 1996 Oct;142(Pt 10):2669–2729. doi: 10.1099/13500872-142-10-2669. [DOI] [PubMed] [Google Scholar]
  4. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blomqvist K., Nikkola M., Lehtovaara P., Suihko M. L., Airaksinen U., Stråby K. B., Knowles J. K., Penttilä M. E. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol. 1993 Mar;175(5):1392–1404. doi: 10.1128/jb.175.5.1392-1404.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cogan T. M., O'dowd M., Mellerick D. Effects of pH and Sugar on Acetoin Production from Citrate by Leuconostoc lactis. Appl Environ Microbiol. 1981 Jan;41(1):1–8. doi: 10.1128/aem.41.1.1-8.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diderichsen B., Wedsted U., Hedegaard L., Jensen B. R., Sjøholm C. Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis. J Bacteriol. 1990 Aug;172(8):4315–4321. doi: 10.1128/jb.172.8.4315-4321.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garrigues C., Loubiere P., Lindley N. D., Cocaign-Bousquet M. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol. 1997 Sep;179(17):5282–5287. doi: 10.1128/jb.179.17.5282-5287.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glatron M. F., Rapoport G. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie. 1972;54(10):1291–1301. doi: 10.1016/s0300-9084(72)80070-1. [DOI] [PubMed] [Google Scholar]
  10. Godon J. J., Chopin M. C., Ehrlich S. D. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol. 1992 Oct;174(20):6580–6589. doi: 10.1128/jb.174.20.6580-6589.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Godon J. J., Delorme C., Bardowski J., Chopin M. C., Ehrlich S. D., Renault P. Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol. 1993 Jul;175(14):4383–4390. doi: 10.1128/jb.175.14.4383-4390.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goupil N., Corthier G., Ehrlich S. D., Renault P. Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol. 1996 Jul;62(7):2636–2640. doi: 10.1128/aem.62.7.2636-2640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grandoni J. A., Zahler S. A., Calvo J. M. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol. 1992 May;174(10):3212–3219. doi: 10.1128/jb.174.10.3212-3219.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HALPERN Y. S., UMBARGER H. E. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J Biol Chem. 1959 Dec;234:3067–3071. [PubMed] [Google Scholar]
  15. HARVEY R. J., COLLINS E. B. ROLES OF CITRATE AND ACETOIN IN THE METABOLISM OF STREPTOCOCCUS DIACETILACTIS. J Bacteriol. 1963 Dec;86:1301–1307. doi: 10.1128/jb.86.6.1301-1307.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatfield G. W., Umbarger H. E. Threonine deaminase from Bacillus subtilis. II. The steady state kinetic properties. J Biol Chem. 1970 Apr 10;245(7):1742–1747. [PubMed] [Google Scholar]
  17. Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holtzclaw W. D., Chapman L. F. Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol. 1975 Mar;121(3):917–922. doi: 10.1128/jb.121.3.917-922.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Imbault P., Colas B., Sarantoglou V., Boulanger Y., Weil J. H. Chloroplast leucyl-tRNA synthetase from Euglena gracilis. Purification, kinetic analysis, and structural characterization. Biochemistry. 1981 Sep 29;20(20):5855–5859. doi: 10.1021/bi00523a031. [DOI] [PubMed] [Google Scholar]
  20. Jay J. M. Antimicrobial properties of diacetyl. Appl Environ Microbiol. 1982 Sep;44(3):525–532. doi: 10.1128/aem.44.3.525-532.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johansen L., Bryn K., Stormer F. C. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol. 1975 Sep;123(3):1124–1130. doi: 10.1128/jb.123.3.1124-1130.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keilhauer C., Eggeling L., Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993 Sep;175(17):5595–5603. doi: 10.1128/jb.175.17.5595-5603.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee F., Yanofsky C. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365–4369. doi: 10.1073/pnas.74.10.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992 Sep;174(17):5633–5638. doi: 10.1128/jb.174.17.5633-5638.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marugg J. D., Goelling D., Stahl U., Ledeboer A. M., Toonen M. Y., Verhue W. M., Verrips C. T. Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol. 1994 Apr;60(4):1390–1394. doi: 10.1128/aem.60.4.1390-1394.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mayer D., Schlensog V., Böck A. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J Bacteriol. 1995 Sep;177(18):5261–5269. doi: 10.1128/jb.177.18.5261-5269.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Möckel B., Eggeling L., Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol. 1992 Dec;174(24):8065–8072. doi: 10.1128/jb.174.24.8065-8072.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Phalip V., Monnet C., Schmitt P., Renault P., Godon J. J., Diviès C. Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118. FEBS Lett. 1994 Aug 29;351(1):95–99. doi: 10.1016/0014-5793(94)00820-5. [DOI] [PubMed] [Google Scholar]
  29. Poolman B., Konings W. N. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol. 1988 Feb;170(2):700–707. doi: 10.1128/jb.170.2.700-707.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pátek M., Krumbach K., Eggeling L., Sahm H. Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol. 1994 Jan;60(1):133–140. doi: 10.1128/aem.60.1.133-140.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramos A., Jordan K. N., Cogan T. M., Santos H. C Nuclear Magnetic Resonance Studies of Citrate and Glucose Cometabolism by Lactococcus lactis. Appl Environ Microbiol. 1994 Jun;60(6):1739–1748. doi: 10.1128/aem.60.6.1739-1748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Renault P., Godon J. J., Goupil N., Delorme C., Corthier G., Ehrlich S. D. Metabolic operons in Lactococci. Dev Biol Stand. 1995;85:431–441. [PubMed] [Google Scholar]
  33. Renna M. C., Najimudin N., Winik L. R., Zahler S. A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993 Jun;175(12):3863–3875. doi: 10.1128/jb.175.12.3863-3875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rouget P., Chapeville F. Reactions sequence of leucine activation catalysed by leucyl-RNA synthetase. 1. Kinetic studies. Eur J Biochem. 1968 Apr;4(3):305–309. doi: 10.1111/j.1432-1033.1968.tb00209.x. [DOI] [PubMed] [Google Scholar]
  35. Sabelnikov A. G., Greenberg B., Lacks S. A. An extended -10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol. 1995 Jul 7;250(2):144–155. doi: 10.1006/jmbi.1995.0366. [DOI] [PubMed] [Google Scholar]
  36. Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
  37. Snoep J. L., Teixeira de Mattos M. J., Starrenburg M. J., Hugenholtz J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol. 1992 Jul;174(14):4838–4841. doi: 10.1128/jb.174.14.4838-4841.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Teng-Leary E., Kohlhaw G. B. Mechanism of feedback inhibition by leucine. Binding of leucine to wild-type and feedback-resistant alpha-isopropylmalate synthases and its structural consequences. Biochemistry. 1973 Jul 31;12(16):2980–2986. doi: 10.1021/bi00740a006. [DOI] [PubMed] [Google Scholar]
  40. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ward J. B., Jr, Zahler S. A. Regulation of leucine biosynthesis in Bacillus subtilis. J Bacteriol. 1973 Nov;116(2):727–735. doi: 10.1128/jb.116.2.727-735.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES